• Title/Summary/Keyword: Al-Cu (W 3 %)

Search Result 119, Processing Time 0.033 seconds

Microstructure and Thermal Behaviors of Droplets During the Formation of Particle Reinforced Metal Matrix Composites by Spray Casting Process (분사주조에 의한 입자강화 금속기지 복합재료의 제조시 액적의 열적거동과 미세조직에 대한 고찰)

  • Kim, Myung-Ho;Bae, Cha-Hurn;Jeong, Hae-Young;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.326-334
    • /
    • 1992
  • Particle-reinforced metal matrix composites via the Osprey spray casting process were fabricated by injecting second phase particles of $Al_2O_3$(<$40{\mu}m$) and W($6{\mu}m$) into the spray of Cu droplets, and the thermal behaviors of the composite droplets during flight were considered theoretically on the basis of mixing modes between the Cu droplets and the reinforced particulates injected. It was found that the W-injected spray is comprised of particle-embedded droplets, and the $Al_2O_3-injected$ spray comprises particle-attached droplets. From the predicted results of the thermal behaviors of the composite droplets and preforms produced, it is concluded that the thermal behaviors of the composite droplets during flight, and during the subsequent deposition are strongly influenced by its mixing modes between the reinforced particulates and Cu droplets during flight.

  • PDF

Effect of Electrode Process Variables in case of Decomposition of $NO_{x}$ by SPCP (연면방전에 의한 질소산화물의 분해시 전극 공정변수에 대한 영향)

  • 안형환;강현춘
    • Journal of the Korea Safety Management & Science
    • /
    • v.1 no.1
    • /
    • pp.241-258
    • /
    • 1999
  • For hazardous air pollutants(HAP) such as NO and $NO_{2}$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min), initial concentrations(100~1,000 ppm), electrode materials(W, Cu, Al), electrode thickness(1, 2, 3 mm) and number of electrode windings(7, 9, 11) were measured. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3 % for NO and 84.7 % for $NO_{2}$ were observed at the power consumptions of 19.8 and 20W respectively and that decomposition efficiency decreased with increasing frequency above 20 kHz. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3 mm in this experiment. As the electrode material, decomposition efficiency was in order : tungsten(W), copper(Cu), aluminum(Al).

  • PDF

A study on Electromigration characteristics in Al line with Ti/TiN Barrier Layer (Ti/TiN Barrier 층을 갖는 Al 배선의 Electromigration 특성)

  • Choo, K.S.;Shin, S.W.;Chu, Eu-Gine;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.364-366
    • /
    • 1995
  • We investigated the Electromigration characteristics in Cu alloyed Al line and the effect of Ti/TiN barrier layer on the characteristics. Test structures were fabricated by wafer level and 50% failure times were tested in the condition of j= 2 MA/$cm^3$, T= 300$^{\circ}C$. The reliability of Al line was improved which was 0.5%Cu Alloyed, but Ti/TiN under layer deteriorated the reliability while TiN over layer improved the characteristics.

  • PDF

Microstructure and Transformation Characteristics with Cooling Rate in Cu-Al-Ni Based SMA Ribbons Fabricated by Melt-Spinning (Cu-Al-Ni계 형상기억리본 제조시 냉각속도에 따른 미세조직 및 변태특성)

  • Lee, Y.S.;Jang, W.Y.;Lee, E.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.265-271
    • /
    • 2000
  • The microstructural change and transformation characteristics with cooling rate i.e. wheel speed were investigated in 82.8wt%Cu-12.8wt%Al-4.3wt%Ni SMA ribbons fabricated by melt-spinning. The thickness and width of ribbon were decreased with increasing wheel speed, while the uniformity of it was improved. At same wheel speed, the grain size of the contact surface of ribbon was smaller than that of free surface. The mean grain size was decreased with increasing wheel speed, resulted in obtaining grains with $3{\mu}m$ in mean diameter in the wheel speed of 30 m/s. However, micro-voids and cracks at grain boundary could be observed at higher wheel speed. $M_s$ and $A_s$ temperatures were decreased, and $M_s{\sim}M_f$ and $A_s{\sim}A_f$ temperature ranges were broadened with increasing wheel speed. All the ribbons were retained the ordered $D0_3$ due to rapid cooling, the volume fraction of it was increased with increasing wheel speed.

  • PDF

Decomposition of Toluene over Transition Metal Oxide Catalysts (전이금속 산화물 촉매를 이용한 톨루엔 분해)

  • Cheon, Tae-Jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.651-656
    • /
    • 2005
  • Toluene, which is emitted from textile process, is considered as an important hazardous air pollutant. In this study, the catalytic activity of transition metal oxides(Cu, Mn, V, Cr, Co, Ni, Ce, Sn, Fe, Sr, Cs, Mo, La, W, Zn)/${\gamma}-Al_2O_3$ catalysts was investigated to carry out the complete oxidation of toluene. The metal catalysts were characterized by XRD-ray diffraction), FE-SEM(Field Emission Scanning Electron Micrograph), BET(Brunauer Emmett Teller) method and TPR(Temperature Programmed Reduction). Among the catalysts, Cu/${\gamma}-Al_2O_3$ was highly promising catalyst for the oxidation of toluene. From the BET results, it seems that the catalytic activity is not correlated to the specific surface area. XRD results indicated that most of catalysts exist as amorphous phase. From the FE-SEM results, it was observed that copper on ${\gamma}-Al_2O_3$ surface was well dispersed among catalysts. The catalytic activity for the toluene oxidation could be explained with that metal oxide catalyst was dispersed well over supports and was attributed to reduction activity in surface of catalysts.

Synthesis and Comparative Analysis of Crystallite Size and Lattice Strain of Pb2Ba1.7Sr0.3Ca2Cu3O10+δ Superconductor

  • Hasan, Maher Abd Ali;Jasim, Kareem Ali;Miran, Hussein Ali Jan
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.66-71
    • /
    • 2022
  • In this article, Pb2Ba1.7Sr0.3Ca2Cu3O10+δ superconductor material was synthesized using conventional solid-state reaction method. X-ray diffraction (XRD) analysis demonstrated one dominant phase 2223 and some impurities in the product powder. The strongest peaks in the XRD pattern were successfully indexed assuming a pseudo-tetragonal cell with lattice constants of a = 3.732, b = 3.733 and c = 14.75 Å for a Pb-Based compound. The crystallite size and lattice strain between the layers of the studied compound were estimated using several methods, namely the Scherrer, Williamson-Hall (W.H), size-strain plot (SSP) and Halder Wagner (H.W) approach. The values of crystallite size, calculated by Scherrer, W.H, SSP and H.W methods, were 89.4540774, 86.658638, 87.7555823 and 85.470086 Å, respectively. Moreover, the lattice strain values obtained by W.H, SSP and H.W methods were 0.0063240, 0.006325 and 0.006, respectively. It was noted that all crystallite size results are consistent; however, the best method is the size-strain plot because it gave a value of R2 approaching one. Furthermore, degree of crystallites was calculated and found to be 59.003321%. Resistivity analysis suggests zero-resistance, which is typical of superconducting materials at critical temperature. Four-probe technique was utilized to measure the critical temperature at onset Tc(onset), zero resistivity Tc(off set), and transition (width ΔT), corresponding to temperatures of 128 K, 116 K, and 12 K, respectively.

A Study on the Thermal Properties of Al-xSi-2Cu-1Mg/ySiC(x:6, 12, 18. $y:0{\sim}10wt.%$) Composite Materials (Al-xSi-2Cu-1Mg/ySiC(x:6, 12, 18. $y:0{\sim}10wt.%$)계 복합재료의 열적성질에 관한 연구)

  • Park, Sang-Joon;Jo, Won-Yong;Kang, Se-Seon;Lim, Yoon-Su;Kwon, Hyuk-Mu;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.342-349
    • /
    • 1993
  • The purpose of this study is to obtain basic information on the particle dispersion, the coefficient of thermal expansion and the thermal conductivity of compocasted Al-xSi-2Cu-1Mg/ySiC(x:6, 12, 18. $y:0{\sim}10wt.%$) composite. With increasing the content of SiC particles, the thermal expension coefficient and the thermal conductivity decrease. The coefficient of thermal expension between 20 and $300^{\circ}C$ is $21.3{\times}10^{-6}/^{\circ}C{\sim}18.0{\times}10^{-6}/^{\circ}C$ for the Al-Si alloys and $18.4{\times}10^{-6}/^{\circ}C{\sim}16.0{\times}10^{-6}/^{\circ}C$ for the composite with 10wt.% SiC. The thermal conductivity at $300^{\circ}C$ is $121{\sim}169W{\cdot}m^{-1}{\cdot}k^{-1}$ for the Al-Si alloys and $114{\sim}159W{\cdot}m^{-1}{\cdot}k^{-1}$ for the composite with 10wt.% SiC.

  • PDF

Natural Dyeing Properties and Antibacterial Activity of Nylon Fabric Dyed with Cochineal (코치닐에 의한 나일론직물의 천연 염색성과 항균성)

  • Bae, Jung-Sook;Huh, Man-Woo
    • Fashion & Textile Research Journal
    • /
    • v.8 no.6
    • /
    • pp.702-708
    • /
    • 2006
  • The purpose of this study was to investigate the dyeing-property and antibacterial activity on nylon fabric dyed with cochineal at variable dyeing conditions. Al, Cr, Fe, Cu and Sn were used as mordants and adsorption was compared with different mordanting methods. The maximum UV-visible absorption band of cochineal extract was 495 nm. The dyeability on nylon fabric was good because of having a amine group. The optimum dyeing conditions of nylon fabrics are dyeing concentration 1.5%(o.w.s), dyeing temperature $60^{\circ}C$, pH 3 and dyeing time 30 minutes. The pre-mordanting method is preferred for Al and Cr, and the post-mordanting one is preferred for Cu, Sn and Fe to achieve better dyeing. The optimum mordanting conditions of wool fabrics dyed with cochineal are mordanting concentration of 0.5%(o.w.s), mordanting temperature $60^{\circ}C$, and dyeing time 30 minutes. Nylon fabrics dyed with cochineal show a little antibacterial activity, but it was increased by Sn mordanting. MIC test results in antibacterial activities revealed that the antibacterial activity of Cu was the highest among mordants, but Sn mordant was the most effective in antibacterial activities after mordanting treatment of nylon fabric. The fastness properties of dyed nylon fabric showd a little worse or a similar level and there was no significant difference between a mordanted and non-mordanted fabric.

Decomposition of CFC-12($CCl_2F_2$) by Discharge Plasma (방전 플라스마에 의한 CFC-12($CCl_2F_2$)의 분해)

  • 강현춘;우인성;황명환;안형환;이한섭;조정국;강안수
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.93-100
    • /
    • 1999
  • Decomposition efficiency, power consumption, and applied voltage of CFC(Chlorofluorocatbon) were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of CFC-12 with various electric frequencies(5~50kHz). flow rates (100~1,000mL/min), initial concentrations(100~1,000ppm), electrode materials(W, Cu, Al). electrode thickness(1, 2, 3mm) and reference gases($N_2$, $O_2$, air) were measured and the products were analyzed with FT-IR. Experimental results showed that at the frequency of 10kHz, the highest decomposition efficiency of 92.7% for CFC-12 were observed at the power consumptions of 29.6W. respectively, and that decomposition efficiency decreased with increasing frequency above 20kHz and decomposition efficiency per unit power were 3.13%/W for CFC-12. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3m. As the electrode material, decomposition efficiency was in order that tungsten(W), copper(Cu), aluminum (Al). Decomposition of CFC-12 in the reference gas of $N_2$ showed the highest efficiency among three reference gases, and then the effect of reference gas on the decomposition efficiency decreased in order of air and $O_2$. The optimum power for the maximum decomposition efficiency was 25.3W for CFC.

  • PDF

Effect of Electrode Process Variables in case of Decomposition of $NO_x$ by SPCP (연면방전에 의한 질소산화물의 분해시 전극 공정변수에 대한 영향)

  • 안형환;강현춘
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.543-563
    • /
    • 1999
  • For hazardous air pollutants(HAP) such as NO and $NO_2$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min) initial concentrations(100~1,000 ppm), electrode materials(W, Cu, Al), electrode thickness(1, 2, 3 mm) and number of electrode windings(7, 9, 11) were measured. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3% for NO and 84.7% for $NO_2$ were observed at the poser consumptions of 19.8 and 29W respectively and that decomposition efficiency decreased with increasing frequency above 20 kHz. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3mm in this experiment. As the electrode material, decomposition efficiency was in order : tungsten(W), copper(Cu), aluminum(Al).

  • PDF