• Title/Summary/Keyword: Al-Cu (W 3 %)

Search Result 118, Processing Time 0.022 seconds

Compositing Modes and Microstructures of $Cu-X(=Al_2O_3,W)_p$ Composite by Centrifugal Spray-Cast Deposition (원심분사주조법에 의한 $Cu-X(=Al_2O_3,W)_p$ 복합재료의 미세조직 및 복합화)

  • Bae, Cha-Hurn;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.480-487
    • /
    • 1997
  • Particle reinforced metal matrix composites(MMCs) via a centrifugal spray-cast deposition(CSD) process were fabricated by injecting second phase particles($Al_2O_3$<40${\mu}m$, W<17.3${\mu}m$) into copper melt on the atomizing disc. Compositing modes were investigated by combining microstructures and mathematical modeling between Cu droplets and the reinforced particles injected. The $Cu/W_P$ powders were shown that the W particles penetrate and get embedded in the Cu droplets. It is considered that the W particles composite preferentially in Cu melt on the atomizing disc. On the other hand, the $Al_2O_3$, particles did not penetrate into the Cu droplets on the atomizing disc but get attached in surface of Cu droplets during the flight. It is considered that the compositing may be attained in the flight distance which the relative velocity between Cu droplet and $Al_2O_3$, particle is maximum. The microstructure of the $Cu/W_P$ and the $Cu/(Al_2O_3)_p$ composite preform was strongly influenced by compositing modes of droplets, and after subsequent deposition it was comprised as it is called the dispersed type and the cell type of microstructure, respectively.

  • PDF

Microstructural Change and Sintering Behavior of W-Cu Composite Powders Milled by 3-Dimensional Mixer (3차원 혼합기로 볼밀링한 W-Cu 복합분말의 미세구조 변화와 소결거동)

  • 김진천
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.210-219
    • /
    • 1998
  • The W-Cu composite powders were synthesized from W and Cu elemental powders by ball-milling process, and their microstructural changes and sintering behaviors were evaluated. The ball milling process was carried out in a 3-dimensional mixer (Turbula mixer) using zirconic ($ZrO_2$) ball and alumina ($Al_2O_3$) vial up to 300 hrs. The ball-milled W-Cu powders revealed nearly spherical shape. Microstructure of the composite powders showed onion-like structure which consists of W and Cu shells due to the moving characteristic of Turbula mixer. The W and Cu elements in the composite powders milled for 300 hrs were homogeneously distributed, and W grain size in the ball-milled powder was smaller than 0.5 $\mu\textrm{m}$. Fe impurity introduced during ball milling process was very low as of 0.001 wt%. The relative sintered density of ball-milled W-Cu specimens reached about 94% after sintering at $1100^{\circ}C$.

  • PDF

Characteristics of Electomigration & Surface Hardness about Tungsten-Carbon-Nitrogen(W-C-N) Related Diffusion Barrier (W-C-N 확산방지막의 전자거동(ElectroMigration) 특성과 표면 강도(Surface Hardness) 특성 연구)

  • Kim, Soo-In;Hwang, Young-Joo;Ham, Dong-Shik;Nho, Jae-Kue;Lee, Jae-Yun;Park, Jun;Ahn, Chan-Goen;Kim, Chang-Seong;Oh, Chan-Woo;Yoo, Kyeng-Hwan;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.203-207
    • /
    • 2009
  • Copper is known as a replacement for aluminum wire which is used for semiconductor. Because specific resistance of Cu ($1.67{\mu}{\Omega}$-cm) is lower than that of Al ($2.66{\mu}{\Omega}$-cm), Cu reduce RC delay time. Although melting point of Cu($1085^{\circ}C$) is higher than melting point of Al, Cu have characteristic to easily react with Silicon(Si) in low temperature, and it isn't good at adhesive strength with Si. For above these reason, research of diffusion barrier to prevent reaction between Cu and Si and to raise adhesive strength is steadily advanced. Our study group have researched on W-C-N (tungsten-carbon-nitrogen) Diffusion barrier for preventing diffusion of Cu through semiconductor. By recent studies, It's reported that W-C-N diffusion barrier can even precent Cu and Si diffusing effectively at high temperature. In this treatise, we vaporized different proportion of N into diffusion barrier to research Cu's Electromigration based on the results and studied surface hardness in the heat process using nano scale indentation system. We gain that diffusion barrier containing nitrogen is more stable for Cu's electromigration and has stronger surface hardness in heat treatment process.

Magnetic Properties of Ultrafine grained Fe-Al-Nb-B-(Cu) Alloys. (Fe-Al-Nb-B-(Cu)계 초미세결정합금의 자기적 특성)

  • 박진영;서수정;김규진;김광윤;노태환
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.4
    • /
    • pp.218-224
    • /
    • 1996
  • The magnetic properties and crystallization behaviors of $Fe_{83-x}Al_{x}Nb_{5}B_{12}(X=1~5at%)$ alloys were investigated. The $Fe_{80}Al_{3}Nb_{5}B_{12}$ alloy was developed a very good soft magnetic material with ultra-fine grain structure in Fe-Al-Nb-B system alloys. When 1 at% of Cu was added in Fe-Al-Nb-B alloy, the soft magnetic properties were found to improve significantly through the reduction of the grain size upto about 6~7 nm at $450^{\circ}C$. The magnetic properties of the $Fe_{79}Al_{3}Nb_{5}B_{12}Cu_{1}$ alloy were as follows : ${\mu}_{eff}(1\;kHz)=26,000,\;B_{10}=1.45\;T,\;H_{c}=25\;mOe,\;P_{c}(100\;kHz,\;0.2\;T)=55\;W/kg$, respectively.

  • PDF

Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy (Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화)

  • Na, Sang-Su;Kim, Yong-Ho;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

The Selective Oxidation of CO in Hydrogen Rich Stream over Alumina Supported Cu-Ce Catalyst (알루미나에 담지된 Cu-Ce 촉매상에서의 개질수소가스에 포함된 CO의 선택적 산화 반응에 관한 연구)

  • Park, J.W.;Jeong, J.H.;Yoon, W.R.;Lee, Y.W.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.155-170
    • /
    • 2003
  • $Cu-Ce/{\gamma}-Al_2O_3$ based catalysts were prepared and tested for selective oxidation of CO in a $H_2$-rich stream(1% CO, 1% $O_2$, 60% $H_2$, $N_2$ as balance). The effects of Cu loading and weight ratio(=Cu/(Cu+Ce)) upon both activity and selectivity were investigated upon the change in temperatures, It was also examined how the activity and selectivity of catalysts were varied with the presence of $CO_2$ and $H_2O$ in the reactant feed. Among the various Cu-Ce catalysts with different catalytic metal composition, Cu-Ce(4 : 16 wf%) /${\gamma}-Al_2O_3$ catalyst showed the highest activity(>$T_{99}$) and selectivities(50-80%) under wide range of temperatures($175-220^{\circ}C$). However, in the Cu-Ce(4 : 16 wt%)/ ${\gamma}-Al_2O_3$, the presence of $CO_2$ and $H_2O$ in the reactant feed decreased the activity and the maximum activity(>$T_{99}$) in terms of reaction temperature moved by about $25^{\circ}C$ toward higher temperature, the $T_{>99}$ window was seen between $210-230^{\circ}C$ (selectivity 50-75%). From $CO_2-/H_2O-TPD$, it can be concluded that the main cause for the decrease in catalytic activity may be attributed to the blockage of the active sites by competitive adsorption of water vapor and $CO_2$ with the reactant at low temperatures.

A Study on RF High Power Durability of Al-Cu Alloy Electrodes Used in Ladder-type SAW(surface acoustic wave) Filters (Al-Cu 합금 전극막 구조를 갖는 사다리형 SAW filter의 RF-고전력 내구성 특성 고찰)

  • 김남철;이기선;서수정;김지수;김윤동
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.435-443
    • /
    • 2001
  • As power durable RF SAW filters, AL-(0∼2wt%)Cu alloy multi-layered thin electrodes were deposited on 42° LiTaO$_3$ piezoelectric substrates by magnetron sputtering process, and then ladder-type RF SAW filters, satisfying the electrical specification of CDMA transmission band, were fabricated through optimizing SAW resonator structures. The temperature of film electrodes in SAW filter was increased with RF power, and reached the maxima to cause a failure of SAW filters at the cut-off frequencies of the RF filter band. As RF power increases, the electrodes of Al-Cu alloy showed higher power durability than that of pure Al. The multi-layer laminated film of Al-1wt.% Cu/Cu/Al-1wt%Cu resulted in the best power durability up to 4W of RF power. Every film electrode, however, was destroyed within seconds whenever applying a critical RF power to SAW filters, regardless of the composition and structure of film electrodes. The breakdown of film electrodes under FR power seems to believe due to the fatigue of electrodes caused by repetitive cyclic stress of surface acoustic wave, which is amplified as RF power increases.

  • PDF

A Study on the Leachate Characteristics of Heavy Metals from MSW Bottom Ash Solidified with Stabilizing Reagents (안정화제를 첨가한 생활폐기물 소각시설 바닥재의 중금속 용출특성에 관한 연구)

  • Lim, Jong-Wan;Dong, Jong-In
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.692-697
    • /
    • 2015
  • In this study, the reduction efficiencies of leachate heavy metal levels were investigated by adding $Al_2O_3$ and CaO to the bottom ash to observe their effects on the heavy metals leachate reduction efficiency. The ratio of $Al_2O_3$ and CaO contents were varied by 10~40% (W/W) alongside different curing time of 7 and 28 days. The reduction efficiencies of leachate heavy metal levels were estimated to be 69.3% for Cu and 52.1% for Pb during the curing time of 7 days. For the curing time of 28 days, the efficiencies changed to 85.2 and 100% for Cu and Pb, respectively. It was thus confirmed that the high reduction efficiency could be obtained as the curing time increased.

A Study on the Burning Characteristics of N-5 Propellant Embedded with Metal Wires (금속선을 삽입한 N-5복기 추진제의 연소 특성)

  • 유지창;박영규;김인철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.78-85
    • /
    • 1999
  • Burning characteristics of solid propellants embedded with four kinds of metal wires(Ag, Cu, Al, Ni-Cr wire) were studied with varying wire diameters(O.10.8 mm) lot N-5 propellant. It was found that the order of the burning rate increment ratio($r_w$/$r_sb$) was Ag wire > Cu wire > Al wire> Ni-Cr wire which was the same as the order of the magnitude of thermal diffusivity. The burning rate increment ratio($r_w$/$r_sb$) of N-5 propellant was less than that of composite Propellant because of the difference of adiabatic flame temperature and flame structure. When Ag, Cu and Al wire having high thermal diffusivity were embedded in N-5 propellant, the plateau and mesa characteristics of the double base propellant were disappeared, but not disappeared in the case of propellant embedded with Ni-Cr wire due to its poor thermal conductivity.

  • PDF

Biosorption of Cr, Cu and Al by Sargassum Biomass

  • Lee, Hak-Sung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.126-131
    • /
    • 1997
  • The biosorption and desorption of Cr, Cu and Al were carried out using brown marine algae Sargassum fluitans biomass, known as the good biosorbent of heavy metals. The content of alginate bound to light metals could be changed by physical and chemical pretreatment. The maximum uptake of Cr, Cu and Al was independent of the alginate content. The maximum uptaker of Al was two times(mole basis) than those of Cu and Cr. The aluminum-alginate complex was found in the sorption solution of raw and protonated biomass. Most of Cu, Al and light metals sorbed in the biomass were eluted at pH 1.1. However, only 5 to 10% of Cr sorbed was eluted at pH 1.1. The stoiceometric ion exchange between Cu and Ca ion was observed on Cu biosorption with Ca-loaded biomass. A part of Cr ion was bound to biomass as Cr(OH)2+ or Cr(OH)2+. Al was also bound to biomass as multi-valence ion and interfered with the desorbed Ca ion. The behavior of raw S. fluitans in ten consecutive sorption-desorption cycles has been investigated in a packed bed flow-through-column during a continuous removal of copper from a 35 mg/L aqueous solution at pH 5. The eluant used was a 1%(w/v) CaCl2/HC solution at pH 3.

  • PDF