The Selective Oxidation of CO in Hydrogen Rich Stream over Alumina Supported Cu-Ce Catalyst

알루미나에 담지된 Cu-Ce 촉매상에서의 개질수소가스에 포함된 CO의 선택적 산화 반응에 관한 연구

  • Park, J.W. (Department of Chemical Engineering, Chungnam Nationnl University) ;
  • Jeong, J.H. (Department of Chemical Engineering, Kyungpook National University) ;
  • Yoon, W.R. (Hydrogen/Fuel Cell Research Department, KIER) ;
  • Lee, Y.W. (Department of Chemical Engineering, Chungnam Nationnl University)
  • 박종원 (충남대학교 화학공학과) ;
  • 정진혁 (경북대학교 화학공학과) ;
  • 윤왕래 (한국에너지기술연구원 수소 연료전지 연구부) ;
  • 이영우 (충남대학교 화학공학과)
  • Published : 2003.06.15

Abstract

$Cu-Ce/{\gamma}-Al_2O_3$ based catalysts were prepared and tested for selective oxidation of CO in a $H_2$-rich stream(1% CO, 1% $O_2$, 60% $H_2$, $N_2$ as balance). The effects of Cu loading and weight ratio(=Cu/(Cu+Ce)) upon both activity and selectivity were investigated upon the change in temperatures, It was also examined how the activity and selectivity of catalysts were varied with the presence of $CO_2$ and $H_2O$ in the reactant feed. Among the various Cu-Ce catalysts with different catalytic metal composition, Cu-Ce(4 : 16 wf%) /${\gamma}-Al_2O_3$ catalyst showed the highest activity(>$T_{99}$) and selectivities(50-80%) under wide range of temperatures($175-220^{\circ}C$). However, in the Cu-Ce(4 : 16 wt%)/ ${\gamma}-Al_2O_3$, the presence of $CO_2$ and $H_2O$ in the reactant feed decreased the activity and the maximum activity(>$T_{99}$) in terms of reaction temperature moved by about $25^{\circ}C$ toward higher temperature, the $T_{>99}$ window was seen between $210-230^{\circ}C$ (selectivity 50-75%). From $CO_2-/H_2O-TPD$, it can be concluded that the main cause for the decrease in catalytic activity may be attributed to the blockage of the active sites by competitive adsorption of water vapor and $CO_2$ with the reactant at low temperatures.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. S. Gottesfeld, and J. Pafford., J. Electrochem. Soc., Vol. 135, 1988, p.2651 https://doi.org/10.1149/1.2095401
  2. B. Emonts, J. B. Hansen, S. L. Jorgensen, B. Hohlein and R. Peters, J. Power Sources, Vol. 71, 1998, p.288-293 https://doi.org/10.1016/S0378-7753(97)02724-9
  3. S. Kawatsu, J. Power Sources, Vol. 71, 1998, p.150-155 https://doi.org/10.1016/S0378-7753(97)02740-7
  4. C. D. Dudfield, R. Chen and P. L. Adcock, J. Power Sources, Vol. 85, 2000, p.237 https://doi.org/10.1016/S0378-7753(99)00339-0
  5. S. H. Oh, and R. M. Sinkevitch, J. of Catal., Vol. 142, 1993, p.254 https://doi.org/10.1006/jcat.1993.1205
  6. M. L. Brown, A. W. Green, G. Cohn, and H. C. Andersen, Ind. Eng. Chem. Vol. 52, 1960, p.841-844 https://doi.org/10.1021/ie50610a025
  7. J. G. E.Cohn, US Patent, 3, 216, 783 (1965)
  8. J. C. Bonacci, T. G. Otchy, and T. Ackerman, US Patent 4, 238, 468(1980)
  9. C. Plog, W. Maunz, T. Stengel, and R. Andorf, Eur. Patent 0, 650, 922, Al (1995)
  10. M. J. Kahlich, H. A. Gasteiger, and R. J. Behm, J. of Catal., Vol. 171, 1997, p.93-105 https://doi.org/10.1006/jcat.1997.1781
  11. M. Watanabe, H. Uchida, H. Igarashi and M. Suzuki, Chemistry Lett., 1995, p.21 https://doi.org/10.1246/cl.1995.21
  12. M. Watanabe, H. Igarashi, M. Suzuki, Y. Sasaki and H. Uchida, Appl. Catal. A, Vol. 159, 1997, p.159-169 https://doi.org/10.1016/S0926-860X(97)00075-6
  13. R. M. Torres Sanchez, A. Ueda, K. Tanaka, and M. Haruta, J. of Catal. Vol. 168, 1997, p.125-127 https://doi.org/10.1006/jcat.1997.1636
  14. M. J. Kahlich, H. A. Gasteiger and R. J. Behm, J. of Catal., Vol. 182, 1999, p.430-440 https://doi.org/10.1006/jcat.1998.2333
  15. Y. Teng, H. Sakurai, A. Ueda and T. Kobayashi, Int. J. Hydro. Energy, Vol.24, 1999, p.355-358 https://doi.org/10.1016/S0360-3199(98)00083-4
  16. O. Korotkikh and R. Farrauto, Catal. Today, Vol.62, 2000, p.249-254 https://doi.org/10.1016/S0920-5861(00)00426-0
  17. W. Liu, and M. Flytzanistephanopoulos, J. Catal., Vol. 153, 1995, p.304-316 https://doi.org/10.1006/jcat.1995.1132
  18. W. Liu, and M. Flytzanistephanopoulos, J. Catal., Vol. 153, 1995, p.317-332 https://doi.org/10.1006/jcat.1995.1133
  19. D. H. Kim and J. E. Cha, 9th APCCHE Congress. 2002, p.619
  20. G. Avgouropoulos, T. Ioannides, H. K. Matralis, J. Batista and S. Hocevar, Catal. Lett., Vol. 73, 2001, p.33-40 https://doi.org/10.1023/A:1009013029842
  21. A. Manasilp, E. Gulari, Appl. Catal. B: Environ., Vol. 37, 2002, p.17-25 https://doi.org/10.1016/S0926-3373(01)00319-8
  22. E. Gulari, C. Guldur, S. Srivannavit and S. Osuwan, Appl. Catal. A: Gen. Vol. 182, 1999, p.147-163 https://doi.org/10.1016/S0926-860X(99)00002-2
  23. T. Inui, K. Fujimoto, T. Uchijima, M. Masai, "New aspects of spillover effect in catalysis", Elsevier, Amsterdam, 1993, p.27
  24. L. Guczi, G. Stetler, Z. Koppany, L. Borko, S. Niwa and F. Mizukami, Appl. Catal. A: Gen., Vol. 191, 1997, p.29
  25. A. Park : "Fuel cell technology(20th & 21st)"-Fuel processors for fuel cell power systems, 1998, p.22
  26. A. Tschipe, W. Liu, M. FlytzaniStephanopoulos, J. of Catal., Vol. 157, 1995, p.42-50 https://doi.org/10.1006/jcat.1995.1266
  27. G. Wrobel, C. Lamenter, A. Bennani, A. Dhuysser, A. Aboukais, J. Chem. Soc.,Faraday Trans. Vol. 91, 1995, p.99-104 https://doi.org/10.1039/ft9959100099
  28. J. B. Wang, S. C. Lin, T. J. Huang, Appl. Catal. A: Gen., Vol. 232, 2002, p.107-120 https://doi.org/10.1016/S0926-860X(02)00101-1
  29. M. F. Luo, Y. J. Zhong. X. X. Yuan and X. M. Zheng, Appl. Catal. A: Gen., Vol.162, 1997, p.121-131 https://doi.org/10.1016/S0926-860X(97)00089-6