• Title/Summary/Keyword: Al-3%Mg

Search Result 1,826, Processing Time 0.025 seconds

The Influence of Alloying Elements on the Fluidity of Al-Zn-Mg Alloys (Al-Zn-Mg계 알루미늄 합금의 유동성에 미치는 합금원소의 영향)

  • Cho, Jea-Sup;Kim, Jee-Hun;Sim, Woo-Jeong;Im, Hang-Joon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.3
    • /
    • pp.127-132
    • /
    • 2012
  • Al-Zn-Mg alloys, being high strength aluminum alloys, have attracted attention as a material of automobile parts that require higher mechanical properties and lightness. Automobile parts with complex shapes are manufactured by low-priced casting method, but Al-Zn-Mg alloys are difficult to cast because of its poor hot cracking, feeding, and fluidity. Thus fluidity experiments on Al-Zn-Mg alloys were conducted for the castability evaluation. The effects of Mg and Zn, representative elements of Al-Zn-Mg alloys, on fluidity were observed. Spiral mold was used for fluidity experiments and the lengths of solidified specimens were measured after melting and gravity casting. Correlation between microstructures and fluidity length based on the alloy composition was considered. According to the experimental results, as the amount of Mg and Zn increased, fluidity decreased. Also, it was confirmed that fluidity change by the variation of Mg composition was greater than that of Zn.

Oxidation of CrAlMgSiN thin films between 600 and 900℃ in air (CrAlMgSiN 박막의 600-900℃에서의 대기중 산화)

  • Won, Seong-Bin;Xu, Chunyu;Hwang, Yeon-Sang;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.112-113
    • /
    • 2013
  • Thin CrAlMgSiN films, whose composition were 30.6Cr-11.1Al-7.3Mg-1.2Si-49.8N (at.%), were deposited on steel substrates in a cathodic arc plasma deposition system. They consisted of alternating crystalline Cr-N and AlMgSiN nanolayers. After oxidation at $800^{\circ}C$ for 200 h in air, a thin oxide layer formed by outward diffusion of Cr, Mg, Al, Fe, and N, and inward diffusion of O ions. Silicon ions were relatively immobile at $800^{\circ}C$. After oxidation at $900^{\circ}C$ for 10 h in air, a thin $Cr_2O_3$ layer containing dissolved ions of Al, Mg, Si, and Fe formed. Silicon ions became mobile at $900^{\circ}C$. After oxidation at $900^{\circ}C$ for 50 h in air, a thin $SiO_2-rich$ layer formed underneath the thin $Cr_2O_3$ layer. The film displayed good oxidation resistance. The main factor that decreased the oxidation resistance of the film was the outward diffusion and subsequent oxidation of Fe at the sample surface, particularly along the coated sample edge.

  • PDF

Effect of Interfacial Reaction Layer on Mechanical Properties of 3-plyMg/Al/STS Clad-metal (Mg/Al/STS 3층 클래드재의 기계적 특성에 미치는 계면반응층의 영향)

  • Kim, In-Kyu;Song, Jun-Young;Lee, Young Sun;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.664-670
    • /
    • 2011
  • 3-ply Mg/Al/STS clad-metal was fabricated by the roll bonding process. An interfacial reaction layer was formed at the Mg/Al interface at and above $300^{\circ}C$ whereas no interfacial reaction layer was observed up to $400^{\circ}C$. The effect of the interfacial reaction layer on the mechanical and fracture properties in clad metals after heat treatments were investigated The chemical compositions were analyzed at the Mg/Al interface by an Energy dispersive X-ray analysis (EDX). A tension test was performed to examine the interfacial cracking properties. The Mg layer fractured first, causing a sudden drop of the stress and Al/STS layer continued to deform until the final fracture. Periodic cracks and crack propagation was observed at the reaction layer between Mg and Al.

A Study on the Propane Dehydrogenation activity of Pt-Sn catalyst using MgAl2O4 support (MgAl2O4 지지체를 이용한 Pt-Sn/MgAl2O4의 프로판 탈수소 활성 연구)

  • Byun, Hyun-Joon;Koh, Hyounglim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.757-767
    • /
    • 2018
  • In the propane dehydrogenation reaction proceeding at high temperature, the main cause of deactivation of the catalyst is coke deposition and sintering. In order to investigate the catalysts for reducing such inactivation, we have investigated the applicability of $MgAl_2O_4$ as a carrier for the catalytic dehydrogenation reaction. $MgAl_2O_4$ was prepared by Alcohthermal method at calcination temperature of 800, 900, $1000^{\circ}C$, and $Pt-Sn/MgAl_2O_4$ catalyst was prepared by supporting Pt and Sn by co-impregnation method. The reaction temperature was conducted at a high temperature of 650, $600^{\circ}C$ to confirm the thermal stability. As a result of the reaction experiment, it was confirmed that the conversion rate and yield of propane dehydrogenation reaction test were higher than that of the carrier-applied catalyst having a carrier calcination temperature of 900 and $1000^{\circ}C$, when the carrier-applied catalyst having a calcination temperature of $800^{\circ}C$ was used, It was found that the yield was higher than that of $Pt-Sn/{\theta}-Al_2O_3$ at $650^{\circ}C$. TGA, BET, XRD, CO-chemisorption, and SEM-EDS analyzes were performed for characterization. $MgAl_2O_4-800^{\circ}C$ was correlated with the relationship between good yield, Pt dispersion and low deactivation rate.

A study on the Mechanical Properties of $Al_2O_{3(p)}$/LXA Composites by Melt-stirring Method (용탕교반법에 의한 $Al_2O_{3(p)}$/LXA복합재료의 기계적 성질에 관한 연구)

  • 이현규;공창덕
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.65-73
    • /
    • 2000
  • Casting of metal matrix composites is an attractive process since it offers a wide selection of materials and processing conditions. Among the casting methods, melt-stirring technology is much attractive route in industrial application because it is more simple and inexpensive compared to squeeze casting or powder metallurgy. In the present work, effects of particle size, volume fraction of particles and mg addition on mechanical properties and thermal expansion coefficients of $\alpha$ -$Al_2O_{3(p)}$/LXA composites were studied. It is shown that $\alpha$ -$Al_2O_3$ particles formed at the interface of $\alpha$ -$Al_2O_3$ particles and matrix made an important role on mechanical properties. Ultimate tensile strength of most composite materials was not increased. But in the case of 5vol% addition of 16$\mu\textrm{m}$ $\alpha$ -$Al_2O_3$ Particle, Ultimate tensile strength of composite materials with 3wt.% Mg was increased. Volume fraction of reinforcements and mg content were thermal expansion coefficients of composite materials were decreased.

  • PDF

High temperature deformation behavior of Sc and Misch metal added Al-Mg alloys (Sc과 Misch Metal을 첨가한 Al-Mg 합금의 고온 변형 거동)

  • Woo, K.D.;Rhy, Y.S.;Kim, S.W.;Kim, D.G.;Yang, C.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2004
  • In this work, the effect of Sc and Mm(misch metal) on the high temperature behavior of Al-Mg alloys was observed. Hardness was increased due to appearance of fine $Al_3Sc$ precipitates. The elongation of Al-Mg-Sc alloy at high temperature was higher than that of Al-Mg-Sc-Mm alloy because Al-Mg-Sc alloy has finer grain sizes than Al-Mg-Sc-Mm alloy. The strain rate sensitivity factor, "m" of Al-Mg-Sc and Al-Mg-Sc-Mm at $475^{\circ}C$ and $1{\times}10^{-2}s^{-1}$ were 0.33 and 0.46, respectively. The activation energy of Al-Mg-Sc and Al-Mg-Sc-Mm alloy for superplastic deformation was 133KJ/mol and 103KJ/mol respectively. The elongation of Al-Mg-Sc alloy at high temperature was decreased by the addition of Mm, but the strength at high temperatures and low strain rate was improved.

Synthesis and Phase Relations of Potassium-Beta-Aluminas in the Ternary System K2O-MgO-Al2O3 (K2O-MgO-Al2O3 3성분계에서 K+-β/β"-Al2O3의 합성 및 상관계)

  • Ham, Choul-Hwan;Lim, Sung-Ki;Lee, Chung-Kee;Yoo, Seung-Eul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1086-1091
    • /
    • 1999
  • $K^+-{\beta}/{\beta}"-Al_2O_3$ in the ternary system $K_2O-MgO-Al_2O_3$ was directly synthesized by solid state reaction. The phase formation and phase relation were carefully investigated in relation to starting composition, calcining temperature and time, and dispersion medium. The optimal synthetic condition was also examined for the formation of ${\beta}"-Al_2O_3$ phase with a maximum fraction. As a composition range, the mole ratio of $K_2O$ to $Al_2O_3$ was changed from 1:5 to 1:6.2 and the amount of MgO used as a stabilizer was varied from 4.2 wt % to 6.3 wt %. The calcining temperature was selected between $1000^{\circ}C$ and $1500^{\circ}C$. At $1000^{\circ}C$, the ${\beta}/{\beta}"-Al_2O_3$ phases began to form resulted from the combining of ${\alpha}-Al_2O_3$ and $KAlO_2$ and increased with temperature rising. All of ${\alpha}-Al_2O_3$ phase disappeared to be homogenized to the ${\beta}/{\beta}"-Al_2O_3$ phase at $1200^{\circ}C$. Near the temperature at $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase showed a maximum value with the composition of $K_{1.67}Mg_{0.67}Al_{10.33}O_{17}$. At temperatures above $1300^{\circ}C$, the fraction of ${\beta}"-Al_2O_3$ phase decreased gradually owing to $K_2O$ loss caused by a high potassium vapor pressure, and the appropriate calcining time was about 5 hours. Acetone was more effective than distilled water as a dispersion medium for milling and mixing.

  • PDF

Synthesis of Cubic Boron Nitride by Al-Mg Solvents

  • Park, Jong-Ku;Park, S.T.;S.K. Singhal;S. J. Cui;K. Y. Eun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.187-190
    • /
    • 1997
  • The aluminum-magnesium (Al-Mg) aklloys have been proved to be an effective solvent for synthesis of cubic-phase boron nitride (cBN) from hexagonal-phase boron nitride (hBN) at the conditions of high pressures and high temperatures (HP/HT). Various kinds of hBN powders having different crystallinity have been tested for cBN synthesis with Al-Mg solvents. The conversion ratio from hBN to cBN and the shape of synthesized cBN crystals appeared to be affected strongly by chemical composition and added amount of Al-Mg solvents as well as crystallinity of BN powders. As the magnesium content increased in the Al-Mg solvents, the conversion ratio increased and the size of cBN crystals became larger. The crystal facets developed well in the specimens with solvents having high Mg content. It was observed that a hBNlongrightarrowcBN transformation occurred more easily in the specimens having well crystallized hBN powders. Amorphous BN having much $B_2O_3$ impurity exhibited a low threshold temperature for transformation to cBN, which was attributed to crystallization of amorphous BN to well crystallized hBN prior to transformation into cBN with help of $B_2O_3$.

  • PDF

Cation Deficiencies in Needles and Fine Roots of Pitch Pine in Seoul Metropolitan Area (首都圈地域에서 리기다소나무 잎과 잔뿌리 속의 陽이온 부족)

  • Rhyu, Tae-Cheol;Kim, Kee-Dae;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.277-286
    • /
    • 1994
  • The contents of major elements were determined in current-year and previous-year needles and fine roots of pitch pine (Pinus yzgida) at 33 sites in Seoul and its vicinity. Contrary to Ca and Al in needles, N, P, Mg and K contents in current-year needles were higher than those in previous-year needles. The N, P, K and Al contents in current-year needles in Seoul were not significantly different from those in rural areas. In contrast, Ca and Mg contents in needles in Seoul were significantly lower than those in suburbs and rural areas. The N /Ca and N /Mg ratios in needles in urban Seoul were higher than those in rural areas. Mg contents in fine roots in soil of 0-5 cm depth increased along with distance from the center of Seoul, while Al contents in fine root in soil of 5-10 cm depth decreased along with distance from the center of Seoul. Al contents in fine roots in soil layer in Seoul and suburbs were higher than those in rural areas. Al contents in fine roots in litter layer were 1 /3 - 1 /2 times lower than those in soil layer for all areas. A1 content in fine roots in deep soil was higher than that in top soil. Therefore growth decline of pitch pine in Seoul and suburbs was thought to be caused by Ca and Mg deficiency in plant tissues and Al toxicity to fine roots. Abnormal vertical distribution of fine roots of pitch pine in Seoul and its vicinity were interpreted as the result of growth reduction of fine roots by Al toxicity in deep layer of acid soil.

  • PDF

Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy (Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화)

  • Na, Sang-Su;Kim, Yong-Ho;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.