• Title/Summary/Keyword: Al-20wt%Si powder

Search Result 43, Processing Time 0.024 seconds

On the Micro-structures of Rapidly Solidified Al-Si Alloy Powder and Growth Direction of Eutectic Silicon (급속응고된 Al-Si 합금분말의 미세조직과 공정 Si 의 성장방향)

  • Ra, Hyung-Yong;Lee, Joo-Dong
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.453-458
    • /
    • 1988
  • Al-Si alloy powder produced by the gas atomizer showed fine eutectic structure between ${\alpha}-dendrites$, that was grown by coupled growth, and there remained small amount of ${\alpha}$ in Al - 20 wt% Si alloy. The morphology of Si in the eutectic structure was largely influenced by the recalescence caused by solidification latent heat, and that was thought to be due to decrement of the surface energy of Si. In modified eutectic Si by rapid solidification, fine twin about $0.01\;{\mu}m$ was observed and growth direction of eutectic Si was <112>. This fact implied that the growth mechanism of eutectic Si in rapid solidification was related to TPRE mechanism. Due to rapid solidification Si was soluble in ${\alpha}-phase$ in Al - 12.6wt%Si alloy up to about 3.4wt%, and the solubility of Si in ${\alpha}-phase$ reaches the equilibrium solubility stare after 60min, holding when it was held isothermally at $253-296^{\circ}C$.

  • PDF

Effect of TiC and AlN on the Wear Behavior and Mechanical Properties of Hypereutectic Al-Si Alloys (과공정 Al-Si 합금의 마모 거동과 기계적 성질에 미치는 TiC와 AlN의 영향)

  • Ju, Seung Hwan;Choi, Jin Myung;Kim, Yong Jin;Park, Ik Min;Park, Yong Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1003-1008
    • /
    • 2010
  • In this study, the effect of the reinforcement on the wear behaviour and mechanical properties of hypereutectic Al-Si alloys was investigated. The Gas atomized hypereutectic Al-20Si alloy powders were mixed with 1, 3, and 5 wt.% AlN and TiC ceramic particles and consolidated by hotpress. The Al-20Si powder has both finely dispersed primary Si phases and eutectic structures. The Al-20Si-AlN, TiC composites showed that the reinforcements were distributed along the boundary of the Al-20Si alloy. The UTS increased with increasing the AlN, TiC contents. At a lower load, with an increasing weight fraction of reinforcements, the wear rate decreased in both composites and the wear mechanism was adhesive wear. At a higher load, the shape of the debris changes the mechanism of the AlN composites to abrasive-adhesion wear and this resulted in an increase of the wear rate.

Fabrication and Properties of High Strength Hypereutectic AI-Si Powders by a Gas Atomization Process II. Extrusion and Mechanical Properties (가스분무 공정에 의한 고강도 과공정 AI-Si 합금 분말의 제조 및 특성연구 II. 압출재 제조 및 기계적 특성)

  • Kim, Yong-Jin;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • The hypereutectic Al-20 wt%Si powders including some amount of Cu, Fe, Mg, Mn were prepared by a gas atomization process. In order to get highly densified Al-Si bulk specimens, the as-atomized and sieved powders were extruded at $500^{\circ}C$, Microstructure and tensile properties of the extruded Al-Si alloys were investigated in this study. Relative density of the extruded samples was over 98%. Ultimate tensile strength (UTS) in stress-strain curves of the extruded powders increased after T6 heat treatments. Elongation of the samples was also increased from 1.4% to 3.2%. The fracture surfaces of the tested pieces showed a fine microstructure and the average grain size was about $1{\mu}m$.

The effect of Sc on the properties of Al-Si alloy Powders fabricated by Gas Atomization and Their extruded bars (Sc첨가가 가스분무법 으로 제조된 Al-Si합금 분말 및 압출재의 특성에 미치는 효과)

  • Lee, Woo-Ram;Kim, Ji-Hoon;Goo, Ja-Myoung;Kim, Jun-Ro;Lee, Tae-Haeng;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.455-458
    • /
    • 2009
  • In this research, the effect of Sc on the micro structure and mechanical properties of Al-20Si alloy powders and their extruded bar was investigated. The Al-20wt%Si and Al-20wt%Si-0.6wr%Sc powders were produced by gas atomization. The micro structures of the alloy powders and extrude was examined by optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The alloy powders were subsequently canned, degassed and extruded in order to produce the alloy bulk. It was found that the micro structure of the Al-20Si alloy powder was refined and the mechanical properties was significantly improved by the addition of 0.6Sc.

  • PDF

Effects of Aluminum and Silicon as Additive Materials for the Zinc Anode in Zn-Air Batteries

  • Lee, Yong-Seok;Ryu, Kwang-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.1
    • /
    • pp.12-20
    • /
    • 2018
  • To solve low cycle efficiency of the zinc anode in Zn-air batteries by corrosion, this study examined the effects of Al as a cathodic protection additive to Zn. The Al-mixed Zn anodes were produced by mixing Zn and Al powder (1, 2, and 3 wt. %). To compare the effects of the Al additive, Si was selected under the same conditions. The morphology and elemental composition of the additives in the Zn were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and inductively coupled plasma - mass spectrometry. The anti-corrosion effects of the Al and Si-mixed Zn anodes were examined by linear polarization. Cyclic voltammetry and charge-discharge tests were conducted to evaluate the electrochemical performance of the Al and Si-mixed Zn anodes. As a result, the Al-mixed Zn anodes showed highest corrosion resistance and cycling performance. Among these, the 2 wt.% Al-mixed Zn anodes exhibited best electrochemical performance.

Manufacture of $\beta-SiC-TiB_2$ Composites Densified by Liquid-Phase Sintering (액상소결에 의한 $\beta-SiC-TiB_2$ 복합체의 제조와 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Park, Mi-Lim;So, Byung-Moon;Lim, Seung-Hyuk;Song, Joon-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.479-481
    • /
    • 2000
  • The effect of $Al_{2}O_{3}+Y_{2}O_{3}$ additives on fracture toughness of $\beta-SiC-TiB_2$ composites by hot-pressed sintering were investigated. The f$\beta-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 16, 20, 24wt% $Al_{2}O_{3}+Y_{2}O_{3}$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 95.88% of the theoretical density and the porosity increased with increasing $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest of $5.88MPa{\cdot}m^{1/2}$ for composites added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. The electrical resistivity showed the lowest of $5.22{\times}10^{-4}\Omega{\cdot}cm$ for composite added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature and is all positive temperature coefficient resistance (PTCR) against temperature up to $700^{\circ}C$.

  • PDF

Manufacture and Properties of ${\beta}$-SIC-TiB$_2$ Composites Densified by Pressureless Annealing (無加壓 열처리에 의한 ${\beta}$-SIC-TiB$_2$ 複合體의 製造와 特性)

  • Shin, Yong-Deok;Ju, Jin-Young;Park, Mi-Lim
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.221-225
    • /
    • 2001
  • The effect of $Al_2O_3+Y_2O_3$ additives on fracture toughness of ${\beta}-SiC-TiB_2$ composites by hot-pressed sintering was investigated. The ${\beta}-SiC-TiB_2$ ceramic composites were hot-press sintered and pressureless-annealed by adding 16, 20, 24 wt% ${\beta}-SiC-TiB_2$(6:4 wt%) powder as a liquid forming additives at low temperature(1800 $^{\circ}C$) for 4 h. Phase analysis of composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$). The relative density was over 95-88 % of the theoretical density, and the porosity increased with increasing $Al_2O_3+Y_2O_3$ contents because of the increasing tendency of pore formation. The fracture toughness showed the highest value of 5.88 MPa${\cdot}m^{1/2}$ for composites added with 20 wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity showed the lowest value of $5.22{\times}10^{-4}\;{\Omega}\;{\cdot}\;cm$ for composite added with 20 wt% $Al_2O_3+Y_2O_3$ additives at room temperature, and was all positive temperature coefficeint resistance(PTCR) against temperature up to 900 $^{\circ}C$.

  • PDF

Characteristic Evaluation of Iron Aluminide-Cu and Ni-P Coated $SiC_p$ Preform Fabricated by Reactive Sintering Process (반응소결법으로 제조한 Iron Aluminide-Cu 및 Ni-P 피복 $SiC_p$ 예비성형체의 특성평가)

  • Cha, Jae-Sang;Kim, Sung-Joon;Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.22 no.1
    • /
    • pp.42-48
    • /
    • 2002
  • Effects of coating treatment of metallic Cu, Ni-P film on $SiC_p$, for $SiC_p$/iron aluminide composites were studied. Porous hybrid preforms were fabricated by reactive sintering after mixing the coated $SiC_p$, Fe and Al powders. Then the final composites were manufactured by squeeze casting after pouring AC4C Al alloy melts in preforms. The change of reactive temperature, density, microstructure of the preforms and microstructure of the composites were investigated. The exprimental results were summarized as follows. The thickness of Cu and Ni-P metallic layer formed on $SiC_p$ by electroless plating method were about $0.5{\mu}m$ and coated uniformly. There was no remakable change in the ignition temperature with variation of the mixing ratio of Fe and Al powder while in the case of coated $SiC_p$ it was lower about $20^{\circ}C$ than in the non-coated $SiC_p$. The maximum reaction temperature increased with increasing Al contents, but decreased with increasing $SiC_p$ contents. Expansion ratio of preform after reactive sintering increased with amount of Cu coated $SiC_p$. In the case of Fe-70at.%Al, the expansion ratio was about 7% up to 8wt.% of $SiC_p$, addition but further addition of $SiC_p$, increased the ratio significantly. And in the case of Fe-50 and 60at.%Al, it was about 20% up to 16wt.% of $SiC_p$ addition and about 28% in 24wt.% of $SiC_p$, addition. The microstructures of compounds showed that the grains became finer as amount of $SiC_p$, and mixing ratio of iron powder increased and the shape of compounds was changed gradually from irregular to spheroidal.