• Title/Summary/Keyword: Al tube

Search Result 347, Processing Time 0.028 seconds

Nonintubated Uniportal Video-Assisted Thoracoscopic Surgery: A Single-Center Experience

  • Ahn, Seha;Moon, Youngkyu;AlGhamdi, Zeead M.;Sung, Sook Whan
    • Journal of Chest Surgery
    • /
    • v.51 no.5
    • /
    • pp.344-349
    • /
    • 2018
  • Background: We report our surgical technique for nonintubated uniportal video-assisted thoracoscopic surgery (VATS) pulmonary resection and early postoperative outcomes at a single center. Methods: Between January and July 2017, 40 consecutive patients underwent nonintubated uniportal VATS pulmonary resection. Multilevel intercostal nerve block was performed using local anesthesia in all patients, and an intrathoracic vagal blockade was performed in 35 patients (87.5%). Results: Twenty-nine procedures (72.5%) were performed in patients with lung cancer (21 lobectomies, 6 segmentectomies, and 2 wedge resections), and 11 (27.5%) in patients with pulmonary metastases, benign lung disease, or pleural disease. The mean anesthesia time was 166.8 minutes, and the mean operative duration was 125.9 minutes. The mean postoperative chest tube duration was 3.2 days, and the mean hospital stay was 5.8 days. There were 3 conversions (7.5%) to intubation due to intraoperative hypoxemia and 1 conversion (2.5%) to multiportal VATS due to injury of the segmental artery. There were 7 complications (17.5%), including 3 cases of prolonged air leak, 2 cases of chylothorax, 1 case of pleural effusion, and 1 case of pneumonia. There was no in-hospital mortality. Conclusion: Nonintubated uniportal VATS appears to be a feasible and valid surgical option, depending on the surgeon's experience, for appropriately selected patients.

Types and Yields of Carbon Nanotubes Synthesized Depending on Catalyst Pretreatment

  • Go, Jae-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.17.2-17.2
    • /
    • 2011
  • Double-walled carbon nanotubes (DWCNTs) were grown with vertical alignment on a Si wafer by using catalytic thermal chemical vapor deposition. This study investigated the effect of pre-annealing time of catalyst on the types of CNTs grown on the substrate. The catalyst layer is usually evolved into discretely distributed nanoparticles during the annealing and initial growth of CNTs. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. Both the catalyst and support layers were coated by using thermal evaporation. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of H2 as a carrier gas and 20 sccm of C2H2 as a feedstock at 95 torr and $750^{\circ}C$. In this study, the catalyst and support layers were subject to annealing for 0~420 sec. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The annealing for 90~300 sec caused the growth of DWCNTs as high as ~670 ${\mu}m$ for 10 min while below 90 sec and over 420 sec 300~830 ${\mu}m$-thick triple and multiwalled CNTs occurred, respectively. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of 112~191 cm-1, implying the presence of DWCNTs, TWCNTs, MWCNTs with the tube diameters 3.4, 4.0, 6.5 nm, respectively. The maximum ratio of DWCNTs was observed to be ~85% at the annealing time of 180 sec. The Raman spectra of the as-grown DWCNTs showed low G/D peak intensity ratios, indicating their low defect concentrations. As increasing the annealing time, the catalyst layer seemed to be granulated, and then grown to particles with larger sizes but fewer numbers by Ostwald ripening.

  • PDF

Gas sensing characteristics of thin film SnO2 sensors with different pretreatments (예비 처리 방법에 따른 박막 SnO2 센서의 가스 감응 특성)

  • Yun, Kwang-Hyun;Kim, Jong-Won;Rue, Gi-Hong;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.309-316
    • /
    • 2006
  • The $SnO_{2}$ thin film sensors were fabricated by a thermal oxidation method. $SnO_{2}$ thin film sensors were treated in $N_{2}$ atmosphere. The sensors with $O_{2}$ treatment after $N_{2}$ treatment showed 70 % sensitivity for 1 ppm $H_{2}S$ gas, which is higher than the sensors with only $O_{2}$ treatment. The Ni metal was evaporated on Sn thin film on the $Al_{2}O_{3}$ substrate. And the sensor was heated to grow the Sn nanowire in the tube furnace with $N_{2}$ atmosphere. Sn nanowire was thermally oxidized in $O_{2}$ environments. The sensitivity of $SnO_{2}$ nanowire sensor was measured at 500 ppb $H_{2}S$ gas. The selectivity of $SnO_{2}$ nanowire sensor compared with thin film and thick film $SnO_{2}$ was measured for $H_{2}S$, CO, and $NH_{3}$ in this study.

A Study on Conductivity Characteristics of X-ray Irradiated Insulating Oil (X선조사(線照射)에 의한 절연유(絶緣油)의 도전특성(導電特性)에 관한 연구(硏究))

  • Kim, Young-Il;Lee, Duck-Chool;Chung, Yon-Tack
    • Journal of radiological science and technology
    • /
    • v.10 no.1
    • /
    • pp.75-83
    • /
    • 1987
  • The insulating oil used for X-ray tube housing were degraded by X-ray irrdiation, high temperature and high anode voltage for normal operation. This study was measured the conduction current-X-ray dose, heating degradation, time, temperature and electric field characteristics and the dependense of electrode materials and gap length in the X-ray irradiatied insulating oil under of D.C voltage. The obtained results can be summarized as following. 1. The conduction current of X-ray irradiated insulating oil is more about $2.5{\sim}3$ times as large as than that of non x-ray irradiated, and is become saturation phenomena after some degree. 2. The conduction current of many times heating x-ray irradiated insulating oil is more than that of a few times heating. 3. The higher temperature x-ray irradiated insulating oil is increased, the more conduction current, and that is increased about ten times as large as when it's temperatures is increased to $80^{\circ}C\;at\;30^{\circ}C$, twenty five times at $100^{\circ}C$. 4. The dependence of electrode materials is appeared at the low electric field, and the small gap length with Fe > Cu > Al. 5. The low electric field than 3000 v/cm is appeared Ohm's law region, and the high is become saturation region at the I-E characteristics. 6. The larger gap length is become, the more conduction current is increased at the same electric field.

  • PDF

Clinical Observations of the Chest Trauma (흉부 손상에 대한 임상적 고찰)

  • 최명석
    • Journal of Chest Surgery
    • /
    • v.23 no.5
    • /
    • pp.905-915
    • /
    • 1990
  • A clinical evaluation was performed on 545 cases of the chest trauma those had been admitted and treated at the department of thoracic and cardiovascular surgery in Chosun University Hospital during the past 11 years 5 months period from January 1978 to may 1989. Obtained results were as follows: 1. The ratio of male to female was 3.9: 1 in male predominance, and the majority[66.6%] was distributed from 3rd to 5th decade. 2. Nonpenetrating chest trauma was more common than penetrating about 4.6 times, and the most common cause of the nonpenetrating injuries was traffic accident[241/448, 53.8%] and of the penetrating injuries was stab wound[88/97, 90.7%]. 3. Only 79 cases[14.5%] were arrived to our emergency room within one hour after trauma. 4. The most common lesion due to trauma among these admitted patients was rib fracture[390/545, 71.6%], and the others were lung contusion[217/545, 39.8%], hemothorax[35%], hemopneumothorax[19.6%], and pneumothorax[11.8%] et al in decreasing order. 5. The associated injuries those required special treatment of other departments were 223 cases and its distributions were bone fractures[178/545, 32.7%], head injury[5.3%], and abdominal injury[6.6%]. 6. The others, but interesting chest injuries were follows: sternum fracture[3.1%], diaphragm rupture[2.6%], myocardial laceration and rupture[2 cases], bronchial rupture and laceration[2 cases], and traumatic thymoma rupture[1 case]. 7. The incidence of flail chest was 5.8%a[26/448] in the nonpenetrating injury, and the causes were multiple rib fracture which was in rows more than 4 rib fracture[20 cases], and sternum fracture[6 cases]. 8. We could managed the most of the patient with conservative treatment[43.1%] or closed tube thoracostomy[52.7%], but required emergency open thoracotomy in 64 cases

  • PDF

The design and fabricationt for ion fraction measurement of plasma generator (플라즈마발생기의 이온분율 측정 장치 설계 및 제작)

  • Lee, Chan-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.368-368
    • /
    • 2008
  • Ion implantation has been widely developed during the past decades to become a standard industrial tool. To comply with the growing needs in ion implantation, innovative technology for the control of ion beam parameters is required. Beam current, beam profile, ion fractions are of great interest when uniformity of the implant is an issue. Especially, it is important to measure the spatial distribution of beam power and also the energy distribution of accelerated ions. This energy distribution is influenced by the proportion of mass for ion in the plasma generator(ion source) and by charge exchange and dissociation within the accelerator structure and also by possible collective effects in the neutralizer which may affect the energy and divergence of ions. Hydrogen atom has been the object of a good study to investigate the energy distribution. Hydrogen ion sources typically produce multi-momentum beams consisting of atomic ion ($H^+$) and molecular ion ($H_2^+$ and $H_3^+$). In the beam injector, the molecular ions pass through a charge-exchanges gas cell and break up into atomic with one-half (from $H_2^+$) or one-third (from $H_3^+$) according to their accelerated energy. Burrell et al. have observed the Doppler shifted lines from incident $H^+$, $H_2^+$, and $H_3^+$ using a Doppler shift spectroscopy. Several authors have measured the proportion of mass for hydrogen ion and deuterium using an ion source equipped with a magnetic dipole filter. We developed an ion implanter with 50-KeV and 20-mA ion source and 100-keV accelerator tube, aiming at commercial uses. In order to measure the proportion of mass for ions, we designed a filter system which can be used to measure the ion fraction in any type of ion source. The hydrogen and helium ion species compositions are used a filter system with the two magnets configurations.

  • PDF

The Effect of HEMM on Microstructure and Mechanical Properties of Ti-Nb Alloy for Implant Biomedical Materials (생체의학 임플란트재료로서 Ti-Nb계 합금의 조직과 기계적 성질에 미치는 HEMM의 영향)

  • Woo, Kee-Do;Choi, Gab-Song;Lee, Hyun-Bum;Kim, In-Yong;Zhang, Deliang
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.587-592
    • /
    • 2007
  • Al-42wt%Nb powder was prepared by high-energy mechanical milling(HEMM). The particle size, phase transformation and microstructure of the as-milled powder were investigated by particle size distribution (PSD) analyzer, scanning electron microscopy (SEM), X-ray diffractometery (XRD), transmission electron microscopy (TEM)and differential thermal analysis (DTA). The milled powders were heated to a sintering temperature at 1000C with under vaccum with vaccum tube furnace. Microstructural examination of sintered Ti-42wt%Nb alloy using 4h-milled powder showed Ti-rich phases (${\alpha}$-Ti) which are fine and homogeneously distributed in the matrix (Nb-rich phase: ${\beta}$-Ti). The sintered Ti-42wt%Nb alloy with milled powder showed higher hardness. The microstructure of the as quenched specimens fabricated by sintering using mixed and milled powder almost are same, but the hardness of as quenched specimen fabricated by using mixed powder increased due to solution hardening of Nb in Ti matrix. The aging effect of these specimens on microstructural change and hardening is not prominent.

Effects of Cryogenic Treatment Cycles on Residual Stress and Mechanical Properties for 7075 Aluminum Alloy (극저온 열처리가 7075 알루미늄 합금의 잔류응력과 기계적 특성에 미치는 영향)

  • Kim, Hoi-Bong;Jeong, Eun-Wook;Ko, Dae-Hoon;Kim, Byung-Min;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • In this study, the effects of cryogenic treatment cycles on the residual stress and mechanical properties of 7075 aluminum alloy (Al7075) samples, in the form of a tube-shaped product with a diameter of 500 nm, were investigated. Samples were first subjected to solution treatment at $470^{\circ}C$, followed by cryogenic treatment and aging treatment. The residual stress and mechanical properties of the samples were systematically characterized. Residual stress was measured with a cutting method using strain gauges attached on the surface of the samples; in addition, tensile strength and Vickers hardness tests were performed. The detailed microstructure of the samples was investigated by transmission electron microscopy. Results showed that samples with 85 % relief in residual stress and 8% increase in tensile strength were achieved after undergoing three cycles of cryogenic treatments; this is in contrast to the samples processed by conventional solution treatment and natural aging (T4). The major reasons for the smaller residual stress and relatively high tensile strength for the samples fabricated by cryogenic treatment are the formation of very small-sized precipitates and the relaxation of residual stress during the low temperature process in uphill quenching. In addition, samples subjected to three cycles of cryogenic treatment demonstrated much lower residual stress than, and similar tensile strength compared to, those samples subjected to one cycle of cryogenic treatment or artificial aging treatment.

Explosive loading of multi storey RC buildings: Dynamic response and progressive collapse

  • Weerheijm, J.;Mediavilla, J.;van Doormaal, J.C.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.193-212
    • /
    • 2009
  • The resilience of a city confronted with a terrorist bomb attack is the background of the paper. The resilience strongly depends on vital infrastructure and the physical protection of people. The protection buildings provide in case of an external explosion is one of the important elements in safety assessment. Besides the aspect of protection, buildings facilitate and enable many functions, e.g., offices, data storage, -handling and -transfer, energy supply, banks, shopping malls etc. When a building is damaged, the loss of functions is directly related to the location, amount of damage and the damage level. At TNO Defence, Security and Safety methods are developed to quantify the resilience of city infrastructure systems (Weerheijm et al. 2007b). In this framework, the dynamic response, damage levels and residual bearing capacity of multi-storey RC buildings is studied. The current paper addresses the aspects of dynamic response and progressive collapse, as well as the proposed method to relate the structural damage to a volume-damage parameter, which can be linked to the loss of functionality. After a general introduction to the research programme and progressive collapse, the study of the dynamic response and damage due to blast loading for a single RC element is described. Shock tube experiments on plates are used as a reference to study the possibilities of engineering methods and an explicit finite element code to quantify the response and residual bearing capacity. Next the dynamic response and progressive collapse of a multi storey RC building is studied numerically, using a number of models. Conclusions are drawn on the ability to predict initial blast damage and progressive collapse. Finally the link between the structural damage of a building and its loss of functionality is described, which is essential input for the envisaged method to quantify the resilience of city infrastructure.

Study of Practical Cathodic Protection of 2nd Class Stainless Steel Shaft by means of Al Sacrificial Anode (AL계 희생양극에 의한 2종스테인리스 강축의 음극방식 실용화 연구)

  • Son, Yeong-Tae;Lee, Myeong-Hun;Lee, Hui-Jun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.22
    • /
    • pp.34-53
    • /
    • 2007
  • In the case of hull material. large sized merchant ships are made of steel, on the other hand FRP or wood are used for small sized fishing boats. At present in Korea approximately 88,500 fishing boats are in operation of which 70% are made of FRP In the meantime, stainless steel is frequently used as shaft materials of the small-size FRP fishing boat. Namely, the kinds of shaft materials are STS 304(18Cr-8Ni), STS 316(18Cr-12Ni-2.5Mo steel) and STS 630(17Cr-Ni-Nb steel)etc. Among these things, STS 304 which is the cheapest and having ordinary corrosion resistance is most widely used as 2nd class shaft material. But, using STS 304 for shaft system material of the small-size FRP fishing boat on seawater environments entails a severe corrosion which causes shaft system troubles. Particularly, the corrosions tend to be concentrated of the stern and bow side, propeller shaft surface of inside of stern tube and the boat having no stern cooling pipe line system. As a solution for those problems, research on the ways to mitigate corrosion on the part of 2nd class stainless steel shaft have been undertaken. In the result, not only clarification for the reason of corrosion of the part of stainless steel shaft used mainly for the small-size FRP fishing boat was done, but also most optimal corrosion protection system was developed by experimenting shaft's protection simulation based of the electrochemical cathodic protection principle. In addition, verification through the field test on the optimal cathodic corrosion protection method by means of aluminum sacrificial anode was carried out. In this study, effective and economical shaft's protection system is suggested to the small-size FRP fishing boat operator by substantiating the results obtained from the research on the optimal cathodic protection.

  • PDF