• Title/Summary/Keyword: Al tube

Search Result 340, Processing Time 0.026 seconds

Condensation Heat Transfer Correlation for Smooth Tubes in Annular Flow Regime

  • Han Dong-Hyouck;Moon C.;Park C.;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1275-1283
    • /
    • 2006
  • Condensation heat transfer coefficients in a 7.92 mm inside diameter copper smooth tube were obtained experimentally for R22, R134a, and R410A. Working conditions were in the range of $30-40^{\circ}C$ condensation temperature, $95-410 kg/m^2s$ mass flux, and 0.15-0.85 vapor quality. The experimental data were compared with the eight existing correlations for an annular flow regime. Based on the heat-momentum analogy, a condensation heat transfer coefficients correlation for the annular flow regime was developed. The Breber et al. flow regime map was used to discern flow pattern and the Muller-Steinhagen & Heck pressure drop correlation was used for the term of the proposed correlation. The proposed correlation provided the best predicted performance compared to the eight existing correlations and its root mean square deviation was less than 8.7%.

An Experimental Study of Vortex Formation of a Circular Cylinder with Serrated Fins (Serrated Fin Tube 후류에 대한 유동가시화 적용 및 근접후류 특성에 관한 연구)

  • Boo Jung-Sook;Kim Kyung-Chun;Ryu Byong-Nam
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.27-30
    • /
    • 2002
  • An experimental study is performed to investigate the characteristics of near wake behind a circular cylinder with serrated fins using the constant temperature anemometer and through flow visualization. Previous report(Boo at al., 2001) shows that there are three different modes in vortex shedding behavior. This paper is focused on the identification of the physical reasons why the difference is occured in vortex shedding. The through flow velocity crossing fins decreases as increasing fin height and decreasing fin pitch mainly due to the flow resistence. Vortex shedding is affected strongly by velocity distribution around fin tube, especially by the velocity gradient. The velocity distribution at X/d=0.0 has lower gradient with increasing freestream velocity and fin height and decreasing fin pitch. Those differences in velocity gradients generate different vortex shedding mechanism.

  • PDF

Flow Pattern and Pressure Drop of Pure Refrigerants and Their Mixture in Horizontal Tube

  • Lim, Tae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2289-2295
    • /
    • 2005
  • Two-Phase flow pattern and pressure drop data were obtained for pure refrigerants R134a and R123 and their mixtures as test fluids in a horizontal tube. The flow pattern is observed through tubular sight glasses located at inlet and outlet of the test section. The flow map of Baker developed for air-water two-phase flow at atmospheric pressure failed to predict the observed flow patterns at the higher value of the mass velocity used in the present study. The map of Kattan et al. predicted the data well over the entire region of mass velocity selected in the present study. The measured pressure drop increased with an increase in vapor quality and mass velocity. A new two-phase multiplier was developed from a dimensional analysis of the frictional pressure drop data measured in the present experiment. This new multiplier was found successfully to correlate the frictional pressure drop.

Evaluation of Condensation Heat Transfer Correlations for Microfin Tubes

  • Han, Dong-Hyouck;Lee, Kyu-Jung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.4
    • /
    • pp.163-168
    • /
    • 2007
  • The feature of six existing condensation heat transfer correlations for microfin tubes were evaluated with the consideration of vapor quality, mass flux, geometries, and various refrigerants. The Kosky and Staub [15] and the Jaster and Kosky [16] correlations for smooth tube were used for the evaluation of the heat transfer enhancement factor (EF). For the prediction of zeotropic mixtures, most correlations show discrepancy with previous measurements. The Yu and Koyama [4] and the Shikazono et al. [8] correlations do not consider spiral angle effect. The Han and Lee [10] correlation shows fin height growth deteriorates heat transfer. Experimental verification to develop reliable condensation heat transfer correlation for microfin tubes is still needed with the consideration of geometrical effects and working conditions.

Shock Tube and Modeling Study of the Ignition of Propane

  • Kim, Gil Yeong;Sin, Gwon Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.303-307
    • /
    • 2001
  • The ignition of propane was investigated behind reflected shock waves in the temperature range of 1350-1800 K and the pressure range of 0.75-1.57 bar. The ignition delay time was measured from the increase of pressure and OH emission in the C3H8-O2-Ar system. The relationship between the ignition delay time and the concentrations of propane and oxygen was determined in the form of mass-action expression with an Arrhenius temperature dependence. The numerical calculations were also performed to elucidate the important steps in the reaction scheme of propane ignition using various reaction mechanisms. The ignition delay times calculated from the mechanism of Sung et al.1 were in good agreement with the observed ones.

Characteristic Evaluation of the Fe-Al Alloy Preform Fabrication by Reactive Sintering Process for the Al Matrix Composites. (반응소결법으로 제조한 Al기 복합재용 Fe-Al합금 예비성형체의 특성평가)

  • Choi, Dap-Chon;Park, Sung-Hyuk;Joo, Hyung-Gon
    • Journal of Korea Foundry Society
    • /
    • v.19 no.6
    • /
    • pp.493-500
    • /
    • 1999
  • Squeeze casting was used for fabricating a light metal base composite having high strength and wearresistance. Reactive sintering was used to prepare the preform of Squeeze casting. To utilize Fe-Al intermetallic compounds and SiC particle as a reinforcement, there needs to prepare Fe-Al mixed powder at 50, 60, 70at.%Al, and add SiC powder to the above mixture at 4, 7, 16, 24wt.%. The prepared mixture with SiC was reactive sintered in a tube furnace at $660^{\circ}C$ to get a porous hybrid preform of intermetallic compound and SiC. The preform prepared above was placed in a metal mold, preheated at $660^{\circ}C$ AC4C matrix was injected into the mold with the temperature of the melt at $610^{\circ}C$ After these processes, 66MPa was applied to the mold for 5 minute to finish the whole procedure. The maximum reaction temperature was increased with the increased Al amount, but decreased with the increased SiC amount. The density of the preform was decreased with SiC amount increase in the compacts due to swelling of the preform. An optical microscope was applied to observe the micro structure and the dispersion of the reinforcements. To analyze phases, We utilized XRD, EDS. Hardness test were chosen to get the information of mechanical properties. There were no significant changes in micro structure between the composite and preform. However, it was shown that uniform dispersion of the reinforcers and complete infiltration of the melt into the preform were achieved through the procedure of the squeeze casting. It was observed that the hardness of the composite is decreased with increased SiC amount, resulting from the volumetric expansion of the preform.

  • PDF

Fabrication and superconducting property of $MgB_2$ tape with Al metal powder addition

  • Ko, Jae-Woong;Yoo, Jai-Moo;Chung, Kuk-Chae;Kim, Young-Kuk;Wang, Xiaolin;Dou, Shi Xue;Yoo, Sang-Im;Chung, Woo-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.15-18
    • /
    • 2007
  • The sub micron sized spherical $MgB_2$ powders were synthesized by spray reaction method. $MgB_2$ tapes with Al addition were fabricated by Powder in Tube (PIT) method. The superconducting property and microstructure of Al doped $MgB_2$ tapes were characterized by X-ray diffraction, optical microscopy and transport measurement under magnetic field. The $J_c$ value of $MgB_2$ tapes was increased with 10 vol. % Al addition. The $J_c$ value of 5,500 A/$cm^2$ and 11,000 A/$cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol. % of Al added $MgB_2$ tape without heat treatment, respectively. The $J_c$ value of 8,000 A/$cm^2$ and 33,000 A/$cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol. % of Al added $MgB_2$ tape with heat treatment, respectively. The $J_c$-B curves show enhancement in $J_c$ (B), which suggests that the microstructure and transport properties of $MgB_2$ tapes have been improved with Al addition.

Optimization of ZnO-based transparent conducting oxides for thin-film solar cells based on the correlations of structural, electrical, and optical properties (ZnO 박막의 구조적, 전기적, 광학적 특성간의 상관관계를 고려한 박막태양전지용 투명전극 최적화 연구)

  • Oh, Joon-Ho;Kim, Kyoung-Kook;Song, Jun-Hyuk;Seong, Tae-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Transparent conducting oxides (TCOs) are of significant importance for their applications in various devices, such as light-emitting diodes, thin-film solar cells, organic light-emitting diodes, liquid crystal displays, and so on. In order for TCOs to contribute to the performance improvement of these devices, TCOs should have high transmittance and good electrical properties simultaneously. Sn-doped $In_2O_3$ (ITO) is the most commonly used TCO. However, indium is toxic and scarce in nature. Thus, ZnO has attracted a lot of attention because of the possibility for replacing ITO. In particular, group III impurity-doped ZnO showed the optoelectronic properties comparable to those of ITO electrodes. Al-doped ZnO exhibited the best performance among various doped ZnO films because of the high substitutional doping efficiency. However, in order for the Al-doped ZnO to replace ITO in electronic devices, their electrical and optical properties should further significantly be improved. In this connection, different ways such as a variation of deposition conditions, different deposition techniques, and post-deposition annealing processes have been investigated so far. Among the deposition methods, RF magnetron sputtering has been extensively used because of the easiness in controlling deposition parameters and its fast deposition rate. In addition, when combined with post-deposition annealing in a reducing ambient, the optoelectronic properties of Al-doped ZnO films were found to be further improved. In this presentation, we deposited Al-doped ZnO (ZnO:$Al_2O_3$ = 98:2 wt%) thin films on the glass and sapphire substrates using RF magnetron sputtering as a function of substrate temperature. In addition, the ZnO samples were annealed in different conditions, e.g., rapid thermal annealing (RTA) at $900^{\circ}C$ in $N_2$ ambient for 1 min, tube-furnace annealing at $500^{\circ}C$ in $N_2:H_2$=9:1 gas flow for 1 hour, or RTA combined with tube-furnace annealing. It is found that the mobilities and carrier concentrations of the samples are dependent on growth temperature followed by one of three subsequent post-deposition annealing conditions.

  • PDF

Luminescence Characteristic of CNT Element in ZnS:(Cu, Al) Thin Film Fabricated by a Screen Printing Method (스크린 프린팅 방법으로 제작한 ZnS:(Cu, AL) 박막의 CNT 불순물 첨가에 의한 광학적 특성에 관한 연구)

  • Shon, Pong-Kyun;Shin, Jun-Ha;Bea, Jae-Min;Lee, Jae-Bum;Kim, Jong-Su;Lee, Sang-Nam
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.1
    • /
    • pp.23-33
    • /
    • 2011
  • This experimental focus to characterize luminescence properties related to CNT (Carbon Nano Tube) element dispersedly implanted in ZnS-based phosphor thin film panel fabricated by a screen printing method. More specifically FE-SEM measurements, L-V(Luminescence vs. Voltage) and photo luminescence were carried out to determine an optimum value of CNT concentration and film thickness for the thin film structure of CNT-ZnS:(Cu, Al) by the screen printing method. We confirmed that an optimum value of CNT concentration in the ZnS:(Cu, Al) film panel is about 0.75 wt% resulting that the electric conductivity is 1.6 times higher than that of pure CNT sample and showing that the luminescence intensity is increasing until the optimum concentration. Clearly, CNT is presenting in the luminescence process providing a pathway for the creation of hot electron and a channel for the electron-hole recombination but overly inserted CNT may hinder to produce the hot electron for making an avalanching process. In case of the overly doped CNT 1.0 wt% in the ZnS-based phosphor, the luminescence intensity is decreasing although the electric conductivity is exponentially increasing. Based on these results, we realized that hot electron occurred by the external electric field or exciton arose by the external photon source are reduced dramatically over the critical value of CNT concentration because CNT element provide various isolated residues in the composites of ZnS based phosphor rather than pathway or channel for the D-A(Donnor to Acceptor) pair transition or the radiative recombination of electron-hole.

Simultaneous Determiniation of Ar/$N_2$Ratios in Groundwater (지하수에 용해된 질소, 아르곤 가스의 동시측정)

  • Kim, Euisik;Roy F. Spalding
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.6-9
    • /
    • 1994
  • Previously reported Ar/N$_2$ratios in groundwater have been measured by single ion monitoring (Barnes et al., 1975; Vogel et al., 1981; Mariotti et al., 1988). The detector geometry and flared flight tube in VG Optima isotopic ratio mass spectrometer appeared to be fortuitously aligned for the simultaneous measurement of Ar/N$_2$ratios. Method development included mechanical adjustments to optimize the mass spectrometer for Ar/N$_2$ratio measurements followed by development of a preparation system for the extraction of air-saturated water samples. Samples containing known Ar/N$_2$ratios were used to assess accuracy and precision, and to test the applicability of methods for measurements of aqueous Ar/N$_2$ratios. The results indicated that the prepared air-saturated water samples were almost identical to the predicted Ar/N$_2$ratios (p <0.001). Groundwater samples were collected from on-going research sites, Shelton and Grand Island, Nebraska. Samples from the Grand Island sludge injection site form a lower boundary for worldwide reported Ar/N$_2$ratios. These lower Ar/N$_2$ratios can be explained by the production of nitrogen gas from this site, where denitrification was reported previously.

  • PDF