• Title/Summary/Keyword: Al powder

Search Result 1,766, Processing Time 0.027 seconds

Effects of heat treatment on Fe-Al Alloy Layers Formed by Al Powder Spray (Al분말 분사에 의해 생성된 Fe-Al합금 피막층의 열처리에 따른 영향)

  • 양병모;박정직;박광정;박경채
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.92-98
    • /
    • 1996
  • Al-Fe alloy layers on heated steel sheet were made by Al powder spray for 30 minutes at $700^{\circ}C$, $800^{\circ}C$ and $1000^{\circ}C$, respectively. As a results, for alloy layers formed at $700^{\circ}C$ and $800^{\circ}C$, main phases were brittle phase $FeAl_3 and Fe_2Al_5$, hardnesses were very high (Hv 700~800), corrosion resistances were good and surfaces were smooth, but wear resistances were bad. For alloy layer formed at $1000^{\circ}C$, main phase was ductile phase $Fe_3Al$, hardness was low (Hv 300~400), corrosion and wear resistances were excellent, but surface was rough. Therefore, alloy layers that formed at $700^{\circ}C$ and $800^{\circ}C$ were heat treated at $1000^{\circ}C$ for 10 minutes for the purpose of smooth surface and excellent wear resistance in this study. It was investigated that brittle phase $FeAl_3 and Fe_2Al_5$ of alloy layers fromed by Al powder spray at $700^{\circ}C$ and $800^{\circ}C$ turn into ductile phase $Fe_3Al$ by heat treated at $1000^{\circ}C$ for 10 minutes without changing smooth surface. It was concluded that the alloy layers formed by Al powder spray on heated steel sheet at $700^{\circ}C$ and $800^{\circ}C$ for 30 minutes and heat treated at $1000^{\circ}C$ for 10 minutes were excellent on wear and smooth surface.

  • PDF

The Oxidation and Sintering of $Al-Al_2O_3$ Powder Mixture by using Microwave (Hybrid) Heating (마이크로파 혼합 가열에 의한 $Al-Al_2O_3$ 분말성형체의 산화와 소결)

  • 박정현;안주삼
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.331-340
    • /
    • 1995
  • Microwave (Hybrid) Heating (MHH) was used to oxidize and sinter Al-Al2O3 powder mixture. For 25 v/o Al specimen and 35 v/o Al specimen, the total processing to produce low-shrinkage reaction bonded alumina was carried out within 1 hour even though conventional furnace process took more than 10 hours. Compared with conventional fast firing process, MHH process increased more than 40% oxidation at the same temperature, and these high oxidation rates were thought to be caused by the surface ohmic current on Al particles.

  • PDF

Development of Thermite Powder for Rail Joining with Recycled Iron Oxide and Aluminium Powder (재활용 산화철 및 알루미늄 분말을 활용한 철도레일 이음용 테르밋 분말 개발)

  • Choi, Sang-Kyu;Park, Sung-Sang;Baek, Eung-Ryul
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.40-45
    • /
    • 2012
  • Nowadays in Republic of Korea, whole amount of the thermite welding powder for rail joinning is dependent on import. However the demand of the thermite welding powder would be enlarge because some constructing high-speed train and city metro projects are currently in progress. In addition this is the main reason why we should develop the thermite welding powder, domestically. This study is focused on utilizing the recyclable materials like Al powders from cans and iron oxide scales from wire rods as the main components of the thermite welding powder. By minimizing Al content in weld zone by controlling the mixing ratio of the Al powder in the thermite welding powder, the excessive dissolution of the Si and Mn components came from the Al powders could be controled. The tensile strength of welding zone in welded rail was 740 MPa, with that the developed thermite welding powder.

Microstructural Characterization of $Al_3$(${Nb_{1-x}}{Zn_x}$) Alloy Prepared by Elemental Powder and Intermetallic Powder (원료분말과 금속간화합물 분말로 기계적 합금화한 $Al_3$(${Nb_{1-x}}{Zn_x}$) 합금의 미세구조특성)

  • Lee, Gwang-Min;Lee, Ji-Seong;An, In-Seop
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.345-353
    • /
    • 2001
  • The present study was carried out to investigate the effect of zirconium addition to $Al_3$Nb intermetallic on the crystal structural modification and microstructural characterization of $Al_3$Nb intermetallic. Elemental Al, Nb, Zr powders and arc melted $Al_3$Nb and $Al_3$Zr intermetallic mixed powders were used as starting materials. MA was carried out in an attritor rotated with 300 rpm for 20 hours. The behavior of MA between two starting materials was some-what different in which the value of internal strain of the elemental powders was higher than that of the intermetallic powder. The intermetallic powder was much more disintegrated during the MA processing. In the case of the elemental powders, AlNb$_2$ phase were transformed to Al(Nb.Zr)$_2$ as a result of ternary addition of Zr element. With the successive heat treatment at 873K for 2 hours, the Al(Nb.Zr)$_2$ phase was transformed to more stable $Al_3$(Nb.Zr) phase. This transformation was clearly confirmed by the identification of X-ray peak position shift. On the other hand, in the carte of the intermetallic powder, there was no evidence of phase transformation to other ternary intermetallic compounds or amorphous phases, even in the case of additional heat treatment. However, nano-sized intermetallic with $Al_3$Nb and $Al_3$Zr were just well distributed instead of phase transformation.

  • PDF

Microstructure and Tensile Deformation Behavior of Ni-Cr-Al Powder Porous Block Material (블록형 Ni-Cr-Al 분말 다공성 소재의 미세조직 및 인장 변형 거동)

  • Kim, Chul-O;Bae, Jung-Suk;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.93-99
    • /
    • 2015
  • This study investigated the microstructure and tensile properties of a recently made block-type Ni-Cr-Al powder porous material. The block-type powder porous material was made by stacking multiple layers of powder porous thin plates with post-processing such as additional compression and sintering. This study used block-type powder porous materials with two different cell sizes: one with an average cell size of $1,200{\mu}m$ (1200 foam) and the other with an average cell size of $3,000{\mu}m$ (3000 foam). The ${\gamma}$-Ni and ${\gamma}^{\prime}-Ni_3Al$ were identified as the main phases of both materials. However, in the case of the 1,200 foam, a ${\beta}$-NiAl phase was additionally observed. The relative density of each block-type powder porous material, with 1200 foam and 3000 foam, was measured to be 5.78% and 2.93%, respectively. Tensile tests were conducted with strain rates of $10^{-2}{\sim}10^{-4}sec^{-1}$. The test result showed that the tensile strength of the 1,200 foam was 6.0~7.1 MPa, and that of 3,000 foam was 3.0~3.3 MPa. The elongation of the 3,000 foam was higher (~9%) than that (~2%) of the 1,200 foam. This study also discussed the deformation behavior of block-type powder porous material through observations of the fracture surface, with the results above.

Improving Flow Property of AlSi10Mg Powder for Additive Manufacturing via Surface Treatment using Methyltrichlorosilane (Methyltrichlorosilane 표면 처리를 통한 적층 제조용 AlSi10Mg 분말의 유동 특성 향상 공정 연구)

  • Park, Sang Cheol;Kim, In Yeong;Kim, Young Il;Kim, Dae-Kyeom;Lee, Kee-Ahn;Oh, Soong Ju;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.363-369
    • /
    • 2022
  • AlSi10Mg alloys are being actively studied through additive manufacturing for application in the automobile and aerospace industries because of their excellent mechanical properties. To obtain a consistently high quality product through additive manufacturing, studying the flowability and spreadability of the metal powder is necessary. AlSi10Mg powder easily forms an oxide film on the powder surface and has hydrophilic properties, making it vulnerable to moisture. Therefore, in this study, AlSi10Mg powder was hydrophobically modified through silane surface treatment to improve the flowability and spreadability by reducing the effects of moisture. The improved flowability according to the number of silane surface treatments was confirmed using a Carney flowmeter. In addition, to confirm the effects of improved spreadability, the powder prior to surface treatment and that subjected to surface treatment four times were measured and compared using s self-designed recoating tester. The results of this study confirmed the improved flowability and spreadability based on the modified metal powder from hydrophilic to hydrophobic for obtaining a high-quality additive manufacturing product.

Effect of ECAP on Microstructure of SiCw/6061Al Composites Produced by Powder Metallurgy (분말야금공정으로 제조한 SiCw/6061Al 복합재료의 미세조직에 미치는 ECAP가공의 영향)

  • Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • The 6061 Al alloy based composites reinforced with 10 vol% SiC whiskers were prepared by powder metallurgy with the powders having the different sizes, i.e. < $30{\mu}m$ and > $30{\mu}m$ The composites were subjected to equal channel angular pressing (ECAP) at various conditions and the microstructural changes during ECAP were examined In the composites SiC whiskers were clustered and randomly aligned. The clusters were relatively well distributed in the composite with the smaller initial powder size. After ECAP, the clusters were aligned parallel to flow direction and became smaller. In addition, the shape of clusters was changed from irregular to round. The microstructure of the ECAPed samples were compared with those of the conventionally hot-extruded composites. The uniform microstructure and enhanced microhardness could be obtained by using the powders having the smaller size, decreasing ECAP temperature and repeating ECAP.

Effect of Powder Synthesis Processing on the Microstructure and Electrical Conductivity of Sintered $CNTs/Fe/Al_2O_3$ Nanocomposites

  • Choa, Yong-Ho;Yoo, Seung-Hwa;Yang, Jae-Kyo;Park, Jin-Woo;Oh, Sung-Tag;Kang, Kae-Myung;Kang, Sung-Goon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1087-1088
    • /
    • 2006
  • The microstructure and electrical conductivity of CNTs dispersed $Al_2O_3$ nanocomposites depending on the powder processing and CNTs content were demonstrated. The composite powders with homogeneous dispersion of CNTs could be synthesized by a catalytic route for direct formation of CNTs on nano-sized Fe dispersed $Al_2O_3$ powders. The sintered nanocomposite using the composite powder with directly synthesized CNTs showed homogeneous microstructure and enhanced elelctrical conductivity. The influence of powder processing on the properties of sintered nanocomposites was discussed by the observed microstructural features.

  • PDF

Syntheses of(Ti, Al)N Powder by the Direct Nitridation (1) (직접질화법에 의한(Ti, Al)N계 복합질화물의 합성(I))

  • Sohn, Yong-Un;Lee, Young-Ki;Hwang, Yeon;Cho, Young-Soo;Kim, Suk-Yoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.187-196
    • /
    • 1995
  • TiN and AlN are ceramic materials with mechanical and chemical properties for use in structural applications at elevated temperature. The purpose of this research is to develop the technology for the synthesis of (Ti, Al)N power, which shows simultancously the excellent properties of TiN and AlN, from the mixed powder($Ti_{0.25}Al_{0.75}$, $Ti_{0.5}Al_{0.5}$ and $Ti_{0.75}Al_{0.25}$) by the direct nitriding method. The effects of variables such as temperature, mixing ratio of Al to Ti in raw material were investigated. The(Ti, Al)N powder can be easily synthesized from the mixed powder by the direct nitriding method. Among the mixed powdres, the nitriding behavior decreased with increasing the ratio of Al to Ti. This behavior is well explained by the nitriding mechanism presented in this research.

  • PDF

Attrition Milling and Reaction-sintering of the Oxide-Metal Mixed Powders: II. Reaction-sintering Behavior as the Milling Characteristics of Powders (산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: II. 분말의 분쇄특성에 따른 반응소결 거동)

  • 황규홍;김의훈
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.448-456
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics were fabricated from the Al/Al2O3 or Zl/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And the effects of the milling characteristics of used raw powders on reaction sintering were investigated. After attrition milling and isopressing at 400 MPa the Al/Al2O3 specimen was oxidated at 1200℃ for 8 hours followed by sintering at 1550℃ for 3 hours. Because mixed powders of flake-type Al with coarse alumina was much more effectively comminuted than the globular-type Al with coarse alumina powders, it's sintered body of more than 97% theoretical density was achived, but low contents of Al leads to relatively higher shrinkage of about 8%. And because coarse alumina particles was much more beneficial in cutting and reducing the ductile Al particles, using the coarse alumina powder was much more effective in reaction sintering. Fused Ca-PSZ powder was reaction sintered with Al at 1550℃ for 3 hours and low shrinkage ZrO2-Al2O3 composites were fabricated. But because Al/Ca-PSZ powder mixtures were not effectively milled the reaction sintering and densification was difficult. And the Ca ion in Ca-PSZ grains diffused into alumina grains during sintering so that the unstabilization of Ca-PSZ body was occured which gave the microcracks in the specimens.

  • PDF