• 제목/요약/키워드: Al implantation

검색결과 78건 처리시간 0.034초

이온주입 공정을 이용한 4H-SiC p-n Diode에 관한 시뮬레이션 연구 (Simulation Study of ion-implanted 4H-SiC p-n Diodes)

  • 이재상;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제22권2호
    • /
    • pp.128-131
    • /
    • 2009
  • Silicon carbide (SiC) has attracted significant attention for high frequency, high temperature and high power devices due to its superior properties such as the large band gap, high breakdown electric field, high saturation velocity and high thermal conductivity. We performed Al ion implantation processes on n-type 4H-SiC substrate using a SILVACO ATHENA numerical simulator. The ion implantation model used Monte-Carlo method. We simulated the effect of channeling by Al implantation in both 0 off-axis and 8 off-axis n-type 4H-SiC substrate. We have investigated the effect of varying the implantation energies and the corresponding doses on the distribution of Al in 4H-SiC. The controlled implantation energies were 40, 60, 80, 100 and 120 keV and the implantation doses varied from $2{\times}10^{14}$ to $1{\times}10^{15}\;cm^{-2}$. The Al ion distribution was deeper with increasing implantation energy, whereas the doping level increased with increasing dose. The effect of post-implantation annealing on the electrical properties of Al-implanted p-n junction diode were also investigated.

이온주입 공정을 이용한 4H-SiC p-n diode에 관한 시뮬레이션 연구 (Simulation study of ion-implanted 4H-SiC p-n diodes)

  • 이재상;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.131-131
    • /
    • 2008
  • Silicon carbide (SiC) has attracted significant attention for high frequency, high temperature and high power devices due to its superior properties such as the large band gap, high breakdown electric field, high saturation velocity and high thermal conductivity. We performed Al ion implantation processes on n-type 4H-SiC substrate using a SILVACO ATHENA numerical simulator. The ion implantation model used a Monte-Carlo method. We studied the effect of channeling by Al implantation simulation in both 0 off-axis and 8 off-axis n-type 4H-SiC substrate. We have investigated the Al distribution in 4H-SiC through the variation of the implantation energies and the corresponding ratio of the doses. The implantation energies controlled 40, 60, 80, 100 and 120 keV and the implantation doses varied from $2\times10^{14}$ to $1\times10^{15}cm^{-2}$. In the simulation results, the Al ion distribution was deeper as increasing implantation energy and the doping level increased as increasing implantation doses. After the post-implantation annealing, the electrical properties of Al-implanted p-n junction diode were investigated by SILV ACO ATLAS numerical simulator.

  • PDF

Al합금에서 질소이온주입에 의한 질화물 형성과 기계적 특성 향상 (The Formation of Nitride and Enhancement of Mechanical Properties of Al Alloy by Nitrogen Implantation)

  • 정재필;이재상;김계령;최병호
    • 한국표면공학회지
    • /
    • 제39권5호
    • /
    • pp.235-239
    • /
    • 2006
  • The aluminum nitride(AlN) layer on Al7075 substrate has been formed through nitrogen ion implantation process. The implantation process was performed under the conditions : 100 keV energy, total ion dose up to $2{\times}10^{18}\;ions/cm^2$. XRD analysis showed that aluminum nitride layers were formed by nitrogen implantation. The formation of Aluminum nitride enhanced surface hardness up to 265HK(0.02 N) from 150HK(0.02 N) for the unimplanted specimen. Micro-Knoop hardness test showed that wear resistance was improved about 2 times for nitrogen implanted specimens above $5\;{\times}\;10^{17}\;ions/cm^2$. The friction coefficient was measured by Ball-on-disc type wear tester and was decreased to 1/3 with increasing total nitrogen ion dose up to $1\;{\times}\;10^{18}ions/cm^2$. The enhancement of mechanical properties was observed to be closely associated with AlN formation. AES analysis showed that the maximum concentration of nitrogen increased as ion dose increased until $5\;{\times}\;10^{17}\;ions/cm^2$.

이온주입 제어에 의한 재료특성 개선에 관한 연구 (A Study on Improvement of Material Characteristics by Control of Ion Implantation)

  • 양영준;이치우;후지타 카즈히사
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1178-1184
    • /
    • 2008
  • In this study, techniques of ion implantation were used in order to improve the characteristics of metal materials such as the oxidation and wear resistant. In particular it is necessary to develope their oxidation and wear resistant that could be used in severe environmental conditions. There are mainly two elementary technologies including ion implantation and/or thin film coating. Ion implantation method was performed for surface modification. As a result, it was found that some ion implantations methods such as Nb, high-temperature Nb ion implantation and Nb+C combined implantation are somewhat effective for improving the oxidation resistance of TiAl alloy. Furthermore, the fluorine PBII treatment is more effective for improving the oxidation resistance of the TiAl alloy with three-dimensional shapes. The implantation of boron ion into thin film of TiN was also effective for improving the properties of materials like high temperature wear resistance. TiCrN film was applied to the actual seal ring for steam turbines, and it was observed that its sliding property showed a successfully good performance.

질소 이온 주입시킨 7050Al합금의 표면 미세구조 변화와 저주기 피로거동 (The Surface Modification and Low Cycle Fatigue Behavior of N+ion Implantated 7050Al Alloy)

  • 이창우;권숙인
    • 열처리공학회지
    • /
    • 제7권4호
    • /
    • pp.307-317
    • /
    • 1994
  • The surf ace microstructure modification by $N^+$ ion implantation into 7050Al alloy and its low cycle fatigue behavior were investigated. Ion implantation method is to physically implant accelerated ions to the surface of a substrate. High dose of nitrogen($5{\times}10^{17}ions/cm^2$) were implanted into 7050Al alloy using current density of accellerating voltage of 100KeV. The implanted layers were characterized by Electron Probe-Micro Analysis(EPMA), Auger Elecron Spectroscopy(AES), X-Ray Diffraction(XRD), X-Ray Photoelectron Spectroscopy(XPS), and Transmission Electron Microscopy(TEM). The experimental results were compared with computer simulation data. It was shown that AlN was formed to 4500 ${\AA}$ deep. The low cycle fatigue life of the $N^4$ion modified material was prolonged by about three times the unimplanted one. The improved low cycle fatigue life was attributed to the formation of AlN and the damaged region on the surface by $N^+$ ion implantation.

  • PDF

Al/TiN/Ti 전극의 Submicron contact에서의 전기적특성(2) (The Electrical properties of Al/TiN/Ti Contact at Submicron contact(2))

  • 이철진;엄문종;라용춘;김성진;성만영;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1069-1071
    • /
    • 1995
  • The electrical properties of Al/TiN/Ti contact are investigated at submicron contacts. The contact resistance and contact leakage current are dependent on metallization, surface dopant concentration, semiconductor surface treatment and contact plug ion implantation. In this paper, the contact resistance and contact leakage current are studied according to surface dopant concentration, semiconductor surface treatment and contact plug ion implantation at 0.8 micron contact. The contact resistance and contact leakage current increases with increasing substrate ion concentration. HF cleaning represents high contact resistance but low contact leakage current while CDE cleaning represents low contact resistance but high contact leakage current. Contact plug ion implantation decreases contact resistance but increases contact leakage current. Specially, RTA represents good electrical properties.

  • PDF

Ion Implantation으로 Ca를 첨가한 단결정 Al2O3의 Crack-like Pore의 Healing 거동 - I. Crack-like Pore의 형성과 Morphological Evolution (Effect of Ca Implantation on the Sintering and Crack Healing Behavior of High Purity Al2O3 Using Micro-lithographic Technique - I. Formation of Crack-like Pore and Its Morphological Evolution)

  • 김배연
    • 한국세라믹학회지
    • /
    • 제34권8호
    • /
    • pp.834-842
    • /
    • 1997
  • Controlled Ca impurity implanted inner crack-like pore in the high purity alumina single crystal, sapphire, had been created by micro-fabrication technique, which includes ion implantation, photo-lithography, Ar ion milling, and hot press technique. The morphological change and the healing of cracklike pore in Ca doped high purity single crystal alumina, sapphire, during high temperature heat treatment in vacuum were observed using optical microscopy. The dot-like surface roughening was developed and hexagon like crystal appeared on inner surface of crack-like pore after heat treatment. Bar type crystals, probably CaO.6Al2O3, were observed on the inner surface after 1 hour heat treatment at 1, 50$0^{\circ}C$, but this bar type crystal disappeared after 1 hour heat treatment at 1, $600^{\circ}C$. This disappearance means that there should be a little increase of Ca solubility limit to alumina at this temperatures.

  • PDF

발치 후 즉시 식립을 위한 임상적 고찰 (Clinical consideration of Immediate implant placement)

  • 오상윤
    • 대한치과의사협회지
    • /
    • 제55권10호
    • /
    • pp.716-724
    • /
    • 2017
  • Past literatures stressed that when a gap occurred between smooth surface implant and alveolar bone, osseointegration was unsatisfactory at histologic examination regardless of clinical findings. Accordingly, standard surgical approach in the early days of implant surgery was to place the implant after all gap was healed. However, Botticelli et al.(2004) reported high degree of osseointegration at the gap with SLA surface implant. From then, the era of immediate implantation has begun because SLA surface implant make gap healing possible. There are two main disadvantages of immediate implantation: (1) surgical technique is sensitive for primary implant stability, (2) Implant placement at the accurate position that predicts external change of extraction wound is required. Immediate implantation has outstanding advantages in all perspectives except for the above-mentioned disadvantages. Therefore, it would be unwise to abandon the option of immediate implantation simply due to surgical difficulties. The purpose of this paper is to describe the necessity of immediate implantation and to present scientific evidence for immediate implantation and accurate implant position by literature review.

  • PDF

질소이온 주입시킨 7050A1 합금의 표면 미세구조 변화의 분석 (Analyzing Surface Microstructure of 7050A1 Alloy Modified by $N^+ion$ Implantation)

  • 이창우;권숙인;한전건
    • 분석과학
    • /
    • 제7권4호
    • /
    • pp.527-540
    • /
    • 1994
  • 본 연구는 질소이온 주입시킨 7050A1 합금의 표면 미세구조 변화에 대하여 살펴보았다. 이온 주입은 이온을 가속시켜서 물리적으로 모재의 표면에 주입시키는 표면처리의 한 방법으로서, 본 연구에서는 가속 에너지를 100KeV로 하고 전류밀도는 $23.1{\mu}A/cm^2$, 주입량은 $5{\times}10^{15}ions/cm^2$, $5{\times}10^{17}ions/cm^2$과, $8{\times}10^{17}ions/cm^2$로 질소이온을 주입하였다. 이온 주입층은 EPMA, AES, XPS, TEM 등으로 분석하였으며, 그 결과를 computer simulation을 통하여 비교하여 보았다. 질소이온 주입시킨 7050A1 합금은 극 표면에서부터 약 $4000{\AA}$ 사이에서 AlN이 Gaussian 분포를 지니고 있었으며, 일정 깊이에서 이온의 주입에 의해 충격을 받은 영역을 관찰할 수 있었고 이러한 표면의 변화들은 미소경도에 영향을 미치게 되어 저하중에서 경도값의 상승을 야기했다.

  • PDF