• Title/Summary/Keyword: Al electrode

Search Result 643, Processing Time 0.036 seconds

C-V Characteristics of Oxidized Porous Silicon (다공성 실리콘 산화막의 C-V 특성)

  • Kim, Seok;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.572-582
    • /
    • 1996
  • The porous silicon was prepared in the condition of 70mA/cm2 and 5.10 sec and then oxidized at 800~110$0^{\circ}C$ MOS(Metal Oxide Semiconductor) structure was prepared by Al electrode deposition and analyzed by C-V (Capacitance-Voltage) characteristics. Dielectric constant of oxidized porous silicon was large in the case of low temperature (800, 90$0^{\circ}C$) and short time(20-30min) oxidation and was nearly the same as thermal SiO2 3.9 in the case of high temperature (110$0^{\circ}C$) and long time (above 60 min) It is though to be caused byunoxidized silicon in oxidized porous silicon film and capacitance increase due to surface area increment effect.

  • PDF

Effect on the Characteristics of Organic Light-Emitting Devices due to the PTFE buffer layer (유기발광소자 특성에 미치는 PTFE 버퍼층의 영향)

  • Jeong, J.;Oh, Y.C.;Chung, D.H.;Chung, D.K.;Kim, S.K.;Lee, S.W.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1070-1073
    • /
    • 2003
  • We have studied the characteristics of organic light-emitting diodes(OLEDs) with the PTFE buffer layer. The OLEDs have been based on the molecular compounds, N,N'-diphenyl-N,N'-bis (3-methylphenyl)-1, 1'- biphenyl-4, 4'-diamine (TPD) as a hole transport, tris(8-hydroxyquinolinoline) aluminum (III) ($Alq_3$) as an electron transport and the Polytetrafluoroethylene (PTFE) as a buffer layer. The devices of structure were fabricated ITO/PTFE/TPD(40nm)/$Alq_3$(60nm)/Al( 150nm) to see the effects of the PTFE buffer layer in organic EL devices. The thickness of the PTFE layer varied from 0.5 to 10[nm]. We were measured Current-Voltage-Luminance Characteristics and Luminance efficiency due to the variation of PTFE thickness. the PTFE layer was reported that helped to enhance the hole tunneling injection and effectively impede induim diffusion from the ITO electrode. We have obtained an improvement of luminance efficiency when the PTFE thickness is 0.5[nm] is used. The improvement of efficiency of is expected due to a function of hole-blocking of PTFE in OLEDs.

  • PDF

Numerical Signal Prediction and Calibration Using the Theory of a Current-Type Electromagnetic Flowmeter for Two-Phase Slug Flow (슬러그 2상유동에서 전류형식 전자기유량계 수치적 신호예측 및 보정)

  • Ahn Yeh-Chan;Oh Byung Do;Kim Jong-Rok;Kim Moo Hwan;Kang Deok-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.671-686
    • /
    • 2005
  • The transient nature and complex geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et al.). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. The velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method, and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for simulating slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are proposed for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

Experimental verification for prediction method of anomaly ahead of tunnel face by using electrical resistivity tomography

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jeongjun;Lee, In-Mo;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.475-484
    • /
    • 2020
  • The prediction of the ground conditions ahead of a tunnel face is very important, especially for tunnel boring machine (TBM) tunneling, because encountering unexpected anomalies during tunnel excavation can cause a considerable loss of time and money. Several prediction techniques, such as BEAM, TSP, and GPR, have been suggested. However, these methods have various shortcomings, such as low accuracy and low resolution. Most studies on electrical resistivity tomography surveys have been conducted using numerical simulation programs, but laboratory experiments were just a few. Furthermore, most studies of scaled model tests on electrical resistivity tomography were conducted only on the ground surface, which is a different environment as compared to that of mechanized tunneling. This study performed a laboratory experimental test to extend and verify a prediction method proposed by Lee et al., which used electrical resistivity tomography to predict the ground conditions ahead of a tunnel face in TBM tunneling environments. The results showed that the modified dipole-dipole array is better than the other arrays in terms of predicting the location and shape of the anomalies ahead of the tunnel face. Having longer upper and lower borehole lengths led to better accuracy of the survey. However, the number and length of boreholes should be properly controlled according to the field environments in practice. Finally, a modified and verified technique to predict the ground conditions ahead of a tunnel face during TBM tunneling is proposed.

Surface Treatment Effect on Electrochemical characteristics of Al Alloy for ship

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.149-149
    • /
    • 2017
  • Aluminum alloys have poor corrosion resistance compared to the pure aluminum due to the additive elements. Thus, anodizing technology artificially generating thick oxide films are widely applied nowadays in order to improve corrosion resistance. Anodizing is one of the surface modification techniques, which is commercially applicable to a large surface at a low price. However, most studies up to now have focused on its commercialization with hardly any research on the assessment and improvement of the physical characteristics of the anodized films. Therefore, this study aims to select the optimum temperature of sulfuric electrolyte to perform excellent corrosion resistance in the harsh marine environment through electrochemical experiment in the seawater upon generating porous films by variating the temperatures of sulfuric electrolyte. To fabricate uniform porous film of 5083 aluminum alloy, we conducted electro-polishing under the 25 V at $5^{\circ}C$ condition for three minutes using mixed solution of ethanol (95 %) and perchloric (70 %) acid with volume ratio of 4:1. Afterward, the first step surface modification was performed using sulfuric acid as an electrolyte where the electrolyte concentration was maintained at 10 vol.% by using a jacketed beaker. For anode, 5083 aluminum alloy with thickness of 5 mm and size of $2cm{\times}2cm$ was used, while platinum electrode was used for cathode. The distance between the two was maintained at 3 cm. Anodic polarization test was performed at scan rate of 2 mV/s up to +3.0 V vs open circuit potential in natural seawater. Surface morphology was compared using 3D analysis microscope to observe the damage behavior. As a result, the case of surface modification showed a significantly lower corrosion current density than that without modification, indicating excellent corrosion resistance.

  • PDF

Enhanced Performance Characteristics of Polymer Photovoltaics by Adding an Additive-incorporated Active Layer

  • Lee, Hye-Hyeon;Hwang, Jong-Won;Jo, Yeong-Ran;Gang, Yong-Su;Park, Seong-Hui;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.316-316
    • /
    • 2010
  • Thin films spin-coated from solvent solutions are characterized by solution parameters and spin-coating process. In this study, performance characteristics of polymer solar cells were investigated with changing solution parameters such as solvent and additives. The phase-separation between polymer and fullerene is needed to make the percolation pathway for better transportation of hole and electron in polymer solar cells. For this reason, cooperative effects of solvent mixtures adding additives with distinct solubility have been studied recently. In this study, chlorobezene, 1, 2-dichlorbenzene, and chloroform were used as solvent. 1, 8-diiodoctaned and 1, 8-octanedithiol were used as additives and were added into poly(3-hexylthiophene-2, 5-diyl)/[6, 6]-phenyl C61 butyric acid methyl ester (P3HT/PCBM) blends. Pre-patterned ITO glass was cleaned using ultrasonication in mixed solvent with ethyl alcohol, isopropyl alcohol and acetone. PEDOT:PSS was spin-coated on to the ITO substrate at 3000rpm and was baked at $120^{\circ}C$ for 10min on the hotplate. The prepared solution was spin-coated at 1000rpm and the spin-coated thin film was dried in the Petri dishes. Al electrode was deposited on the thin film by thermal evaporation. The devices were annealed at $120^{\circ}C$ for 30min. By adding 2.5 volume percent of additives into the chlorobenzene from that bulk heterojunction films consisting of P3HT/PCBM, the power efficiency (AM 1.5G conditions) was increased from 2.16% to 2.69% and 3.12% respectively. We have investigated the effect of additives in P3HT/PCBM blends and the film characteristics and the film characteristics including J-V characteristics, absorption, photoluminescence, X-ray diffraction, and atomic force microscopy to mainly depict the morphology control by doping additives.

  • PDF

Study on the $N_2$ Plasma Treatment of Nanostructured $TiO_2$ Film to Improve the Performance of Dye-sensitized Solar Cell

  • Jo, Seul-Ki;Roh, Ji-Hyung;Lee, Kyung-Joo;Song, Sang-Woo;Park, Jae-Ho;Shin, Ju-Hong;Yer, In-Hyung;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.337-337
    • /
    • 2012
  • Dye sensitized solar cell (DSSC) having high efficiency with low cost was first reported by Gr$\ddot{a}$tzel et al. Many DSSC research groups attempt to enhance energy conversion efficiency by modifying the dye, electrolyte, Pt-coated electrode, and $TiO_2$ films. However, there are still some problems against realization of high-sensitivity DSSC such as the recombination of injected electrons in conduction band and the limited adsorption of dye on $TiO_2$ surface. The surface of $TiO_2$ is very important for improving hydrophilic property and dye adsorption on its surface. In this paper, we report a very efficient method to improve the efficiency and stability of DSSC with nano-structured $TiO_2$. Atmospheric plasma system was utilized for nitrogen plasma treatment on nano-structured $TiO_2$ film. We confirmed that the efficiency of DSSC was significantly dependent on plasma power. Relative in the $TiO_2$ surface change and characteristics after plasma was investigated by various analysis methods. The structure of $TiO_2$ films was examined by X-ray diffraction (XRD). The morphology of $TiO_2$ films was observed using a field emission scanning electron microscope (FE-SEM). The surface elemental composition was determined using X-ray photoelectron spectroscopy (XPS). Each of plasma power differently affected conversion efficiency of DSSC with plasma-treated $TiO_2$ compared to untreated DSSC under AM 1.5 G spectral illumination of $100mWcm^{-2}$.

  • PDF

Impedance Change of Aluminum Pad Coated with Epoxy Molding Compound for Semiconductor Encapsulant (반도체 패키지 봉지재용 에폭시 수지 조성물이 코팅된 알루미늄 패드의 임피던스 변화)

  • 이상훈;서광석;윤호규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • The corrosion behavior of aluminum pad coated with epoxy molding compound (EMC) was investigated using electrochemical impedance spectroscopy (EIS). The impedance change was evaluated by the absorption of deionized water (DI water) to EMC coating and the interface between EMC and aluminum. During the absorption a decrease in resistance and thus an increase in capacitance of EMC as well as the interface of EMC/Al could be observed. Up to about 170 hours of absorption the EMC was saturated with the water molecules and ions generated from EMC. Subsequently the ionic water was penetrated to the interface and finally the corrosion of aluminum was occurred by the Dl water and ions. From measuring the adhesion strength with the Dl water absorption it was expected that the saturation of water and ions in the interface decreased the adhesion strength. The higher filler content of EMC should be necessary to inhibit the corrosion of aluminum electrode in microelectronic packages.

  • PDF

Effects of Propofol on Electroencephalogram in Dogs (Propofol이 개의 뇌파에 미치는 영향)

  • 장환수;장광호;채형규;권은주;김정은
    • Journal of Veterinary Clinics
    • /
    • v.17 no.2
    • /
    • pp.359-367
    • /
    • 2000
  • The aim of this study was to evaluate the effects of propofol on cortical electroencephalogram (EEG) in seven dogs. Propofol infusion was accomplished from low concentration to high concentration in series, and each concentration was infused for 20 minutes (M0: 0, M0.5: 0.5, M1.0:1.0, and M1.5: 1.5 mg/kg/min of infusion rate). EEG was recorded via needle electrode placed at Cz, which was applied to International 10-20 system. Arterial blood pressure. blood gas analysis and ECG were also measured. Hoemodynamics, Pa$CO_2$, PaO$_2$, heart rate and respiratory rate were variable, but were net significant(p>0.05). The power spectra of EEG in every concentration was compared wish those of control (MO). The powers at a1l frequencies at M1.0 and Ml.5 were decreased. Especially, the powers of the frequencies over 20 Hz were significantly decreased (p<0.O5). Powers at frequencies between 8 and 15Hz at MO.S were significantly increased (p<0.05) in response to the painful stimuli. It was inferred that they may reflect activity of the brain which is consciously processing the external Stimuli. Like the Power spectra, al1 the band powers of He EEG ($\delta$ 1-4, $\theta$4-8, $\alpha$ 8-13, $\beta$L13-21. $\beta$H 21-30, \ulcorner 30-50, and total 1-5OHz) were decreased in proportion to the increase of infusion rate at M1 .0 and M1.5. Especially, decrease of $\beta$H and ${\gamma}$ were significant(p<0.01). At M0.5, $\alpha$ band was significantly increased(p<0.05) among all the bands. Seizure activities which were concide with occurrence of spike wave were shown in all dogs at Ml .0 and M1.5.

  • PDF

탄소나노튜브 에미터 기반 Flat Light Lamp 제작 시 금속전극 선폭과 간격 변화에 따른 전계방출 특성평가

  • Lee, Han-Seong;Im, Byeong-Jik;Ha, In-Ho;O, Se-Uk;Lee, Cheol-Seung;Lee, Gyeong-Il;Jo, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.520-520
    • /
    • 2013
  • Lateral 구조를 갖는 탄소나노튜브 에미터 캐소드의 금속전극 선폭과 간격은 탄소나노튜브 에미터 밀도와 게이트에 인가되는 전계의 크기에 밀접한 관계가 있어 전계방출특성에 큰 영향을 나타내므로 조속한 상업화를 위해서는 최적화 연구가 요구된다. 따라서 본 연구에서는 금속전극의 선폭과 간격을 110/30, 80/30, 40/30과 120/20, 90/20, 20/20 ${\mu}m$로 각각 변화시켜 4.6인치 탄소나노튜브 에미터 기반 flat light lamp 개발연구를 진행하였다. 이때 사용한 금속전극은 2 mm 두께를 갖는 4.6인치 소다라임 글라스 위에 패턴 된 PR에 Ag를 sputtering하여 증착 후 PR을 lift-off하여 형성하였다. 이와 같이 형성된 금속전극은 ~1 ${\mu}m$와 12 nm의 두께와 표면단차를 각각 가지고 있었다. 형성된 금속전극 위에 유전체와 탄소나노튜브 에미터를 각각의 페이스트를 사용하여 스크린 인쇄와 소성과정을 통해 형성하였다. 이때 레이저 빔을 전극사이의 빈 공간에 조사하여 탄소나노튜브 에미터를 금속전극 위에 정밀하게 정렬하였으며 잔존하는 유기물과 유기용매를 없애기 위해 대기압 공기분위기의 $410^{\circ}C$에서 10분간 소성과정을 거친 후 접착테이프를 사용하여 잔탄 속에 있는 탄소나노튜브 에미터를 물리적 힘으로 수직하게 노출시켜 캐소드를 준비하였다. 애노드는 전계에 의해 방출된 전자의 측정과 전계방출 이미지를 얻기 위해서 P22 형광체와 Al박막이 증착된 2 mm 두께의 소다라임 글라스를 사용하였다. 캐소드와 애노드 사이의 간격은 6~10 mm로 유지하였고, 진공챔버의 기본 압력을 $5{\times}10^{-6}$ Torr 이하로 유지하였다. 캐소드와 게이트 전극에 1, 4 kHz와 3% duty를 갖는 bipolar 형태의 DC 사각펄스파를, 애노드에 ~18 kV의 DC 고전압을 각각 인가하여 평가하였으며 추후, 이렇게 제작된 다양한 선폭과 간격을 갖는 탄소나노튜브 에미터 기반 flat light lamp의 전계방출특성과 효율에 대한 비교 연구를 진행할 계획이다.

  • PDF