• Title/Summary/Keyword: Al concentration

Search Result 1,828, Processing Time 0.026 seconds

Increasing of Macrophage Migration Inhibitory Factor Expression in Human Patients Infected with Virulent Brucella in Iraq

  • Khudhur, Hasan R.;Menshed, Abbas Ali;Hasan, Ahmed Abbas
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.569-573
    • /
    • 2020
  • Brucellosis is a zoonotic disease caused by Brucella infections and humans usually contract this disease from close contact with infected animals or their products, usually via the ingestion of cheese or crude milk. Macrophage migration inhibitory factor (MIF) and Pro- and anti-inflammatory cytokines play an important role in susceptibility/resistance and the immunopathogenesis of Brucella infection. These cytokines are crucial factors in the initiation and progression of protective immunity against Brucella infection but the role of MIF has not been well studied in the human response to intracellular microbes. This study was designed to investigate the effect of MIF expression on Brucella susceptibility. A total of 85 positive rose Bengal tests and 24 samples from healthy individuals were collected for this study and subjected to polymerase chain reaction assays (PCR) of the bcsp31 diagnostic gene. MIF concentrations were evaluated using Enzyme-Linked immunosorbent assay (ELISA) and the results showed that 46 (54%) of the rose Bengal test samples were positive and 39 (46%) were negative for bcsp31 (p ≤ 0.05) and used as the gold standard for all of the comparisons in this study. The ELISA results indicate that the mean concentration of MIF was significantly higher in patients with positive rose Bengal tests when compared to the control groups and that its concentration increases with increasing age in both the patient and control groups (p ≤ 0.05).

Electrical and optical properties of Al and F doped ZnO transparent conducting film by sol-gel method (Sol-gel법에 의한 Al과 F가 첨가된 ZnO 투명전도막의 전기 및 광학적 특성)

  • Lee, Seung-Yup;Lee, Min-Jae;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • Al-doped and F-doped ZnO (ZnO : Al & ZnO : F) thin films were coated onto glass substrate by sol-gel method. These films showed c-axis orientation in common, but different I(002)/[I(002) + I(101)] and FWHM (full width at half-maximum). In particular, the grain size of the ZnO : Al films decreased with the increase in the Al-doping concentration, while for the ZnO : F films the grain siae increased up to F 3 at% and then decreased. For the electrical properties, Hall effect measurement was used. The resistivity of the ZnO : Al films and the ZnO : F films were, respectively, $2.9{\times}10^{-2}{\Omega}cm$ at Al 1 at% and $3.3{\times}10^{-1}{\Omega}cm$ at F 3 at%. Moreover compared with ZnO:Al films, ZnO:F films have lower carrier concentration (ZnO : Al $4.8{\times}10^{18}cm^{-3}$, ZnO : F $3.9{\times}10^{16}cm^{-3}$) and higher mobility (ZnO : Al $45cm^2/Vs$, ZnO : F $495cm^2/Vs$). For average optical transmittances, ZnO : Al thin films have $86{\sim}90%$ and ZnO : F films have $77{\sim}85%$ comparatively low.

Reaction Characteristics of Water Gas Shift Catalysts in Various Operation Conditions of Blue Hydrogen Production Using Petroleum Cokes (석유코크스 활용 블루수소생산을 위한 Water Gas Shift 촉매의 조업조건에 따른 반응특성)

  • Park, Ji Hye;Hong, Min Woo;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • To confirm the applicability of the water gas shift reaction for the production of high purity hydrogen for petroleum cokes, an unutilized low grade resource, Cu/ZnO/MgO/Al2O3 (CZMA), catalyst was prepared using the co-precipitation method. The prepared catalyst was analyzed using BET and H2-TPR. Catalyst reactivity tests were compared and analyzed in two cases: a single LTS reaction from syngas containing a high concentration of CO, and an LTS reaction immediately after the syngas passed through a HTS reaction without condensation of steam. Reaction characteristics in accordance with steam/CO ratio, flow rate, and temperature were confirmed under both conditions. When the converted low concentration of CO and steam were immediately injected into the LTS, the CO conversion was rather low in most conditions despite the presence of large amounts of steam. In addition, because the influence of the steam/CO ratio, temperature, and flow rate was significant, additional analysis was required to determine the optimal operating conditions. Meanwhile, carbon deposition or activity degradation of the catalyst did not appear under high CO concentration, and high CO conversion was exhibited in most cases. In conclusion, it was confirmed that when the Cu/ZnO/MgO/Al2O3 catalyst and the appropriate operating conditions were applied to the syngas composition containing a high concentration of CO, the high concentration of CO could be converted in sufficient amounts into CO2 by applying a single LTS reaction.

Effects of Heavy Metals on Growth and Protein Synthesis in Cyanobacterium synechocystis sp. PCC 6803 (중금속이 Cyanobacterium synechocystis sp.PCC 6803의 성장과 단백질 합성에 미치는 영향)

  • 강경미;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.4
    • /
    • pp.315-329
    • /
    • 1996
  • The changes of growth and protein synthesis pattern by aluminum (Al), cadmium (Cd), zinc (Zn) treatments were studied in Cyanobacterium synechocystis sp. PCC 6803. When exposed to Al from 5ppm to 3oppm, synechocystis grows normally. But more than that retard the growth of algae notably. The 0.05ppm Cd additions had no effect on the growth of algae. 0.1, 0.2, and 0.5ppm Cd inhibited growth. Under 1 and 2ppm Cd stress, growth was greatly diminished. Zn had dual effects. The growth of algae in media containing 5ppm was stimulated. As concentration increases more than l5ppm, growth inbition increases. Under 25ppm Zn stress, growth was greatly diminished. According to logistic theory, r and K values of each heavy metal-treated groups were estimated. Correlation analysis of r and K values with metal concentration shows that there is negative correlation between K and concentration in Cd and Zn treatments. Critical concentration which shows lethal or sublethal effect was estimated by t-test of each r and K value. The cells cultured in 10, 20, 30, 40 and 5oppm of Al, 1 and 2ppm of Cd, and 10, 15, 20, 25 and 30ppm of Zn for 4 days was used for protein analysis. Analysis of protein synthesis with SDS-PACE showed alterations of protein synthesis pattern. The synthesis of protein about 220kD increased markedly. In this study, it showed that resistance mechanism against Al, Cd, and Zn is K selection and that metal stress induced the change of protein synthesis in Cyanobacterium synechocystis sp. PCC 6803.Key words:Cyanobacterium synechocystis sp. FCC 6803, Heavy metals, Aluminum, Cadmiutm Zinc, Crowth, Frotein synthesis.

  • PDF

Analysis of Characteristics of Cohesive Sediment Settling (점착성 퇴적물의 침전 특성 분석)

  • Kim, Jong-Woo;Yoon, Sei-Eui;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.133-142
    • /
    • 2005
  • The settling concentration of fine suspended solid particles(alumina(Al$_2$O$_3$) and quartz(SiO$_2$)) is investigated with the physico-chemical effects(initial concentration, pH and NaCl). Laboratory tests have confirmed the significant influence of increasing initial concentration and salinity which can lead to flocculation due to the intermolecular attraction. Furthermore, the influence of the pH value on the concentration-time corves of alumina has been on firmed. Besides a numerical model to predict the behaviour of cohesive deposit under still water is analyzed by solving the unsteady one-dimensional diffusion-advection equation with a explicit, implicit, Crank-Nicolson and finite difference scheme. The model predicts the existence of an equilibrium concentration. Application of the model with implicit centered difference to data from settling experiments shows a similar distribution.

Observation of Effects of Phosphatidylcholine and Al Salts Concentration on the Formation of Vesicles by TEM (베시클 생성에 미치는 Phosphatidylcholine과 알루미늄 염 농도의 영향에 관한 TEM 관찰)

  • Jeong, Jong Jae;Kim, Chang Hyeon;Lee, Byeong Gyo;Lee, Hae Uk
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.3
    • /
    • pp.173-179
    • /
    • 1996
  • Transmission Electron Microscopy (TEM) was used to monitor the response of vesicle size and the intervesicle agglomeration with a variety of experimental parameters. Considered parameters are: (a) reaction temperture, (b) concentration of phosphatidylcholine, (c) concentration of aluminum ion with fixed concentration of phosphatidylcholine at 0.39 mM, and (d) mixed concentration of aluminum and phosphatidylcholine when fixing the weight ratio of phosphatidylcholine to aluminum at 0.01. Controlling these parameters, vesicle size changed and intervesicle agglomeration observed. As reaction temperature and the concentration of phosphatidylcholine increase, vesicle size decreases. With 0.2 M of aluminum ion, abnormal vesicle growth led by intervesicle agglomeration and coalescence was observed. When weight ratio of phosphatidylcholine to aluminum is 0.01, optimal vesicle size and size distribution can be obtained.

  • PDF

The Effect of HCl-AlCl3(Catalyst) Concentrations on Acid Hydrolysis of Ricestraw Cellulose (염산(鹽酸)과 촉매 AlCl3의 농도가 볏짚 Cellulose의 산가수분해(酸加水分解)에 미치는 영향)

  • Lee, Byung-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.23-27
    • /
    • 1992
  • 81.9% of the cellulose delignified by acetosolv process was hydrolyzed in HCl-$AlCl_3$ hydrolysis system when $AlCl_3$ was used as catalyst in breaking down of glycosidic bond of cellulose. It was well compared that the HCl hydrolysis system without $AlCl_3$ as catalyst showed only 60~61% of the hydrolyzed yield. Also monosaccharide yield including glucose clearly increased when $AlCl_3$ was use. When concentration of HCl and $AlCl_3$ was increased, the hydrolyzed monosaccharide was increased within certain range. The monosaccharid yield out of the hydrolyzed reached 55.4% at optimum conditions which were identified as 20% of Hel solution, 0.03 Mol of $AlCl_3$, $120^{\circ}C$ of reaction temperature and 7 hours of reaction time employed in this study.

  • PDF

Wear properties of Al-Pb alloys produced by a forced stirring method (강제교반법으로 제조된 Al-Pb계 베어링 합금의 마모특성)

  • 임화영;허무영;임대순
    • Tribology and Lubricants
    • /
    • v.8 no.1
    • /
    • pp.70-77
    • /
    • 1992
  • Al-Pb-Si bearing alloys were produced by a forced stirring method and a rapid solidification process to study wear properties of bearing alloys. A homogeneous distribution of Pb particles in Al matrix could be obtained by means of the forced stirring and the rapid cooling during the casting. The wear properties of bearing alloys were tested by a pin-on-disc wear tester. The change in microstructure according to the alloy manufacturing variables was observed by the backscattered electron images. Al-Pb and Al-Si binary alloys showed a transition from mild to severe wear. The transition was not found in Al-Pb-Si ternary alloys. It could be concluded that the lubricatioin effect of Pb and the strengthening effect of Si in the ternary alloys enhanced the bearing properties. A Al-25%Pb-13%Si alloy showed the lowest coefficient of friction in this experiment. It indicated that the optimum concentration of alloy was 25% Pb and 13% Si when the forced stirring of melt and water-cooled-copper-mold solidification were adopted.

Investigation of Interface Reaction between TiAl Alloys and Mold Materials

  • 김명균;김영직
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.289-289
    • /
    • 1999
  • This paper describes the investment casting of TiAl alloys. The effects of mold material and mold preheating temperature for the investment casting of TiAl on metal-mold interfacial reaction were investigated by means of optical micrography, hardness profiles and an electron probe microanalyzer. The mold materials examined were colloidal silica bonded ZrO₂, ZrSiO₄, A1₂O₃and CaO stabilized ZrO₂. When compared with conventional titanium a1loy, the high aluminum concentration of TiAl alloys helps to lower their reactivity in the molten state. The A1₂O₃mold is a promising mold material for the investment casting of TiAl in terms of the thermal stability, formability and cost. Special attention need to be paid to thermal stability and mold preheating when developing the investment calling of TiAl alloys.

Electrical and optical properties of ZnO:Al transparent conductive films with thermal treatments (ZnO:Al 투명도전막의 열처리에 따른 전기적 및 광학적 특성)

  • Ma, Tae Young;Park, Ki Cheol
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.435-440
    • /
    • 2020
  • ZnO:Al films with about 500 nm thick were prepared by RF magnetron sputtering. The ZnO:Al films were annealed at 100 ℃, 200 ℃, 300 ℃, and 400 ℃ for 10 h, respectively. The resistivity, carrier concentration, and mobility variation of ZnO:Al films with heat treatments were measured. The causes of the resistivity variation of ZnO:Al films with heat treatments were investigated by utilizing the results of x-ray diffraction and field emission scanning electron microscope. The energy band gap, Urbach energy, and refractive index were obtained from the transmittance of ZnO:Al films. The change in electrical properties of the ZnO:Al film was explained in relation to the optical properties.