• Title/Summary/Keyword: Al cathode

Search Result 274, Processing Time 0.029 seconds

Plasma polymer passivated organic light emitting diodes

  • Cho, Dae-Yong;Kim, Min-Su;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.893-896
    • /
    • 2003
  • Plasma polymerized para-xylene (PPpX) thin films deposited by plasma enhanced chemical vapor deposition (PECVD) were used to passivate the organic light emitting diodes (OLEDs). For OLEDs, indium tin oxide (ITO), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD), tris(8-hydroxyquinoline) aluminum $(Alq_{3})$ and aluminum (Al) were used as the anode, the hole transport layer (HTL), the emitting layer (EML) and the cathode, respectively. The OLED device with the PPpX passivation film (passivated device) showed similar electrical and optical characteristics to those of the OLED device without the PPpX passivation film (control device), indicating that the PECVD process did not degrade the performance of the OLEDs notably. The lifetime of the passivated device was two times longer than that of the control device. Passivation of OLEDs with PPpX films also suppressed the growth of dark spots. The density and size of dark spots of the passivated device were much smaller than those of the control device.

  • PDF

The Electro-optical Properties of Multilayer EL Devices with P3HT as Emitting layer (P3HT를 이용한 다층막 전계발광 소자의 전기-광학적 특성)

  • Kim, Dae-Jung;Kim, Ju-Seung;Kim, Jeong-Ho;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1018-1021
    • /
    • 2003
  • We have synthesized poly(3-hexylthiophene) and studied the optical properties of P3HT for applying to the red emitting materials of organic electroluminescent device. Usually, an organic EL device is composed of single layer like anode/emitting layer/cathode, but additional layer such as hole transport, electron transport and buffer layer is deposited to improve device efficiency. In this study, Multilayer EL devices were fabricated using tris(8-hydroxyquinolinate) aluminum($Alq_3$) as electron transport material, (N,N'-diphenyl-N,,N'(3-methylphenyl)-1,1'-biphenyl-4,4'diamine))(TPD) as hole transport/electron blocking materials and LiF as buffer layer. That is, a device structure of ITO/blending layer(TPD+P3HT)/$Alq_3$/LiF/Al was employed. In the Multilayer device, the luminance of $10{\mu}W/cm^2$ obtained at 10V. And, we present the experimental evidence of the enhancement of the Foster energy transfer interaction in emitting layer.

  • PDF

Effect of the Surface Roughness of ITO Thin Films on the Characteristics of OLED Device (ITO 박막의 표면 거칠기에 따른 OLED 소자의 특성)

  • Lee, Bong-Kun;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.49-52
    • /
    • 2009
  • We have investigated the effect of the surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of ITO thin films, we have processed photolithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the ITO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the ITO thin films. Device structure was ITO/$\alpha$-NPD/DPVB/Alq3/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer (minolta CS-1000A). The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

  • PDF

PEMFC Operation Connected with Methanol Reformer System

  • Lee, Jung-Hyun;Park, Sang-Sun;Shul, Yong-Gun;Park, Jong-Man;Kim, Dong-Hyun;Kim, Ha-Suck;Yoo, Seung-Eul
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.303-307
    • /
    • 2008
  • The studies on integrated operation of fuel cell with fuel processor are very essential prior to its commercialization. In this study, Polymer Electrolyte Membrane Fuel Cell (PEMFC) was operated with a fuel processor, which is mainly composed of two parts, methanol steam reforming reaction and preferential oxidation (PROX). In fuel processor, ICI 33-5 (CuO 50%, ZnO 33%, $Al_2O_3$ 8%, BET surface area: $66\;m^2g^{-1}$) catalyst and CuO-$CeO_2$ catalyst were used for methanol steam reforming, preferential oxidation (PROX) respectively. PEMFC was operated by hydrogen fuel generated from fuel processor. The resulting gas from PROX reactor is used to operate PEMFC equipped with our prepared anode and cathode catalyst. PtRu/C catalyst gives more tolerance to CO.

Fabrication of Organic Electroluminescent Device and electro-optical properties using metal-chelates($Snq_2,Snq_4$) for Emitting Material Layer (금속-킬레이트계($Snq_2,Snq_4$) 발광층을 이용한 유기 전기 발광 소자의 제작과 전기.광학적 특성)

  • Yoon, H.C.;Yoo, J.H.;Kim, B.S.;Kim, J.K.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1575-1577
    • /
    • 2002
  • In this study, multi layer type OLED(Organic Light Emitting Diode) has been fabricated using $Snq_2$, $Snq_4$, and $Alq_3$ for development of high efficiency, electrical and optical properties of multi layer type OLED investigated. The HTL(Hole Transfer Layer) and EML(Emitting Material Layer) were fabricated by using vacuum evaporation on ITO electrode, and its thickness controlled using thickness monitor. Al was used as a cathode. The electrical and optical properties such as J-V, brightness-V and EL spectrum of OLED device was measured using I.V.L.T system. The result, brightness of $Alq_3$, $Snq_2$ and $Snq_4$ were $3900cd/m^2$, $63cd/m^2$ and $23cd/m^2$ respectively.

  • PDF

A STUDY ON ELECTRON INJECT10N CHARACTERISTICS WITH DOPED CATHODES OF ORGANIC LIGHT EMITTING DIODES (도핑한 음극을 이용한 유기전기발광소자의 전자주입 특성에 관한 연구)

  • Kwak, Yun-Hee;Lee, Yong-Soo;Park, Jae-Hoon;Lee, Jong-Hyuk;Hong, Sung-Jin;Kang, Chang-Heon;Kim, Yeon-Ju;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1609-1611
    • /
    • 2002
  • Multi-layer organic electroluminescent(EL) devices with Al-CsF composite as a cathode were fabricated. This device privides low driving voltage and high quantum efficiency. CsF is evaporated onto and diffuse into electron transport layer. $Alq_3$. The Fermi level of $Alq_3$ moves towards the LUMO level.

  • PDF

The Composition of the Rare Earth Based Conversion Coating Formed on AZ91D Magnesium Alloy

  • Chang, Menglei;Wu, Jianfeng;Chen, Dongchu;Ye, Shulin
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • As structural materials, magnesium (Mg) alloys have been widely used in the fields of aviation, automobiles, optical instruments, and electronic products. There are few studies on the effect of coating conditions on the compositional variation during the formation process of the conversion coatings. Rare-earth based conversion coating on AZ91 magnesium alloy was prepared in ceric sulfate and hydrogen peroxide contained solution. The element composition and valence as well as their distribution in the coating were analyzed with energy dispersive X-ray spectroscopy (EDS), Electron probe micro-analyzer (EPMA), X-ray photoelectron spectroscopy (XPS). The effect of treating process on the element composition were also studied. It was found that the conversion coating surface consists of Mg, Al, O, Ce, and the weight content of Ce in the coating was affected by the treating solution concentration and immersion time; the Ce element was distributed in the coating non-uniformly and existed in the form of $Ce^{+3}$ and $Ce^{+4}$, while the O element existed in the form of $OH^-$, $O^{2-}$, $H_2O$. Based on microscopic analysis results, the electrochemical deposition mechanism on the micro-anode and micro-cathode in the process of the coating growth was suggested.

Effect of surface roughness of AZO thin films on the characteristics of OLED device (AZO 박막의 표면 거칠기에 따른 OLED 소자의 특성)

  • Lee, B.K.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.25-29
    • /
    • 2010
  • We have investigated the effect of surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of AZO thin films, we have processed photo-lithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the AZO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the AZO thin films. Device structure was AZO/${\alpha}$-NPD/DPVB/$Alq_3$/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer. The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

Electrical and optical characterizations of OSCs based on polymer/fullerene BHJ structures with LiF inter-layer (Polymer/fullerene/LiF inter-layer BHJ 유기태양전지의 광학 및 전기적 특성에 대한 연구)

  • Song, Yoon-Seog;Kim, Seung-Ju;Ryu, S.O.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2011
  • In this study, we have investigated the power conversion efficiency of organic solar cells utilizing conjugated polymer/fullerene bulk-hetero junction(BHJ) device structures. We have fabricated poly(3-hexylthiophene)(P3HT), poly[2methoxy-5-(3',7'-dimethyloctyl-oxy)-1-4-phenylenevinylene] as an electron donor, [6,6]-phenyl $C_{61}$ butyric acid methylester(PCBM-$C_{61}$)as an electron acceptor, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS) used as a hole injection layer(HIL), after fabricated active layer, between active layer and metal cathode(Al) deposited LiF interlayer(5 nm). The properties of fabricated organic solar cell(OSC) devices have been analyzed as a function of different thickness. The electrical characteristics of the fabricated devices were investigated by means J-V, fill factor(FF) and power conversion efficiency(PCE). We observed the highest PCEs of 0.628%(MDMO-PPV:PCBM-$C_{61}$) and 2.3%(P3HT:PCBM-$C_{61}$) with LiF inter-layer at the highest thick active layer, which is 1.3times better than the device without LiF inter-layer.

Surface treatment of ITO with Nd:YAG laser and OLED device characteristic (Nd:YAG 레이저로 표면처리된 ITO를 전극으로 한 유기EL 소자의 특성)

  • No, I.J.;Shin, P.K.;Kim, H.K.;Kim, Y.W.;Lim, Y.C.;Park, K.S.;Chung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1359-1360
    • /
    • 2006
  • lTO(Indium-Tin-Oxide) was used as anode material for OLED. Characteristics of ITO have great effect on efficiency of OLEDS(Organic light emitting diodes). ITO surface was treated by Nd:YAG laser in order to improve its chemical properties, wettability, adhesive property and to remove the surface contaminants while maintaining its original function. In this study, main purpose was to improve the efficiency of OLEDs by the ITO surface treatment: ITO surface was treated using a Nd:YAG(${\lambda}=266nm$, pulse) with a fixed power of 0.06[w] and various stage scanning velocities. Surface morphology of the ITO was investigated by AFM. Test OLEDs with surface treated ITO were fabricated by deposition of TPD (HTL), Ald3 (ETL/TML) and Al (cathode) thin films. Device performance of the OLEDs such as V-I-L was investigated using Source Measurement Unit (SMU: Keithly. Model 2400) and Luminance Measurement (TOPCON. BM-8).

  • PDF