• Title/Summary/Keyword: Al alloy ships

Search Result 22, Processing Time 0.022 seconds

Cavitation Characteristics of Al-Mg and Al-Mg-Si Alloy for Ship in Sea Water (선체 재료용 Al-Mg 합금과 Al-Mg-Si 합금의 해수 내 캐비테이션 특성)

  • Kim, Seong-Jong;Kim, Kyu-Hwan;Lee, Seung-Jun
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.136-142
    • /
    • 2011
  • Al alloys have been used widely for commercial and military ships in most ocean countries since mid-1950s, and the value as light metal with high mechanical strength has been proven. As the safety and fuel efficiency of Al ships have improved, she can carry more freight, sail faster and travel longer distances. Furthermore, in the shipbuilding industry, Al alloys are applied as structural materials for ships to various areas including the deck of luxurious cruises, battleships and leisure ships. In addition, Al alloys are being spotlighted as environmental-friendly material as they can be recycled even after end of lifespan. However, Al alloys for ships must be carefully selected after considering corrosion resistance, endurance, strength, and weldability in sea water environment. Al alloys to satisfy these conditions are used widely include 5000 series Al-Mg alloy and 6000 series Al-Mg-Si alloy. Thus, this study selected and evaluated the cavitation characteristics of the 5000 series Al alloys that are used in hulls that directly contact seawater and the 6000 Al alloys that are used in the upper structures of ships. Results of cavitation test with time, weightloss and cavitation rate of 5456-H116 showed the smallest damage among 5052-O, 5456-H116 and 6061-T6.

The Protection Potential Decision by Electrochemical Experiment of Al-Mg-Si Alloy for Ship in Seawater (해수용액에서 선박용 Al-Mg-Si 합금의 전기화학적 실험에 의한 방식전위 결정)

  • Jeong, S.O.;Park, J.C.;Han, M.S.;Kim, S.J.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • The many vessels are built with FRP(Fiber-Reinforced Plastic) material for small boats and medium vessels. However, FRP is impossible to be used for recyclable material owing to environmental problems and causes large proportion of collision accidents because radar reflection wave is so weak that large vessels could not detect FRP ships during the sailing. Hence, Al alloy comes into the spotlight to solve these kinds of problems as a new-material for next generation instead of FRP. Al alloy ships are getting widely introduced for fish and leisure boats to save fuel consumption due to lightweight. In this study, it was selected 6061-T6 Al alloy which are mainly used for Al-ships and carried out various electrochemical experiment such as potential, anodic/cathodic polarization, Tafel analysis, potentiostatic experiment and surface morphologies observation after potentiostatic experiment for 1200 sec by using the SEM equipment to evaluate optimum corrosion protection potential in sea water. It is concluded that the optimum corrosion protection potential range is -1.4 V ~ -0.7 V(Ag/AgCl) for 6061-T6 Al alloy, in the case of application of ICCP(Impressed current cathodic protection), which was shown the lowest current density at the electrochemical experiment and good specimen surface morphologies after potentiostatic experiment for Al-Mg-Si(6061-T6) Al alloy in seawater environment.

Effects of rotation speed and time in potentiostatic experiment in seawater for 5083-H116 Al alloy

  • Lee, Seung-Jun;Han, Min-Su;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.974-980
    • /
    • 2014
  • Aluminum acts as sacrificial anode and corrosion protection with Al2O3 formation. If the same current on material for Al ships with steel ships supplies, the more hydrogen would be occurred, that result is bring about over-protection. For this reason, the damage by hydrogen embrittlement leads to the serious accident. In this study, we evaluate electrochemical behavior with rotation speed of 5083-H116 Al alloy material for Al ship in seawater. To examine the electrochemical characteristics with rotation speed and its effects on performance, experiments were conducted at four rotation speed. Results of experiments, the corrosion current density and damage were increased by applying the rotation speed compared to static state.

Effects of Water Cavitation Peening on Cavitation Characteristics of 5000 Series Al Alloys (5000계열 Al 합금의 캐비테이션 특성에 관한 워터 캐비테이션 피닝의 영향)

  • Kim, Seong-Jong;Hyun, Koang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.481-487
    • /
    • 2012
  • Recently, the construction of the small Al alloy ships is an increasing trend in viewpoint such as the disposal issue of a retired ship, the enhancement of environmental regulation and resources recycling etc. for FRP ships. However, Al alloy ship which can achieve high speed by light weight in marine environment is exposed to a problem on materials damage by cavitation-erosion which is generated by large impact pressure with the collapse of air bubbles due to cavitation. Consequently, in this study, water cavitation peening technology was applied in Al alloy for ship to enhance durability life by preventing cavitation damage. So, the water cavitaton peening application time that presented the excellent cavitation characteristic investigated. The weight-loss of 5456-H116, 5083-H321 and 5052-O Al alloy at the optimum water cavitation peening time were improved to 42.11 %, 50.0 % and 25.7 %, respectively.

A Study on the Corrosion of Al-Alloy Propeller Used for a Coasting Vessel (연안 선박용 Al합금 프로펠러의 부식에 관한 연구)

  • LIM, Uh-Joh;PARK, Hee-Ok;YUN, Byoung-Du
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.15 no.2
    • /
    • pp.176-183
    • /
    • 2003
  • Recently, with the tendency of lightening, high-strength and high-speed in the marine industries such as marine structures, ships and propellers, it is rapidly enlarged the use of the aluminium alloy. Therefore, there occurs much interest in the study on corrosion characteristics of aluminium alloy. This paper was studied on the corrosion characteristics of Al-Mg alloy propeller used for a coasting vessel. Under the various pH of marine environment, the corrosion test of Al-Mg alloy was carried out. And thus polarization resistance, corrosion potential, and current density behavior of Al-Mg alloy and galvanic corrosion behavior of Al-brass and Al-Mg alloy coupled Al 5086 and SS 400 for hull were investigated. The main results are as following: 1. The corrosion potential of Al-brass propeller is more nobel than materials for hull, but that of Al-Mg alloy propeller is low or similar to materials for hull. Therefore, the galvanic corrosion of hull due to Al-Mg propeller don't occur. 2. The polarization resistance of Al-Mg alloy in sea water of pH 4 is highest, and corrosion current density of Al-Mg propeller is the most controlled. 3. As pH value decreases, potential showed Evans polarization diagram approaches cathodic potential. The corrosion current density of Al-Mg alloy is controlled to anodic reaction rate, therefore, the corrosion reaction of Al-Mg alloy is anodic control.

Investigation on Cavitation-Erosion Damage with the Cavitation Amplitude of Al Alloy Materials in Seawater (해수 내 다양한 알루미늄 선박용 재료의 캐비테이션 진폭에 따른 캐비테이션-침식 손상 연구)

  • Yang, Ye-Jin;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.250-258
    • /
    • 2020
  • Recently, 5000 series and 6000 series Al alloys have been used as hull materials for small and medium-sized ships because of their excellent weldability, corrosion resistance, and durability in marine environments. Al ships can navigate at high speed due to their light weight. However, cavitation-erosion problems cause reducing durability of Al ship at high speed. In this investigation, 5052-O, 5083-H321, and 6061-T6 Al alloy materials were used to evaluate the damage characteristics with amplitude (cavitation strength). As a result of the electrochemical experiments, the corrosion current density and corrosion potential of 6061-T6 in seawater were 8.52 × 10-7 A/㎠ and -0.771 V, respectively, presenting the best corrosion resistance. The cavitation-erosion experiment showed that 5052-O had the lowest hardness value and cavitation-erosion resistance. 5052-O also had a very short incubation period. As the experiment progressed for 5052-O, pitting formed and grew in a short time, and was observed as severe cavitation-erosion damage that eliminated in large quantities. Among the three specimens, 5083-H321 presented the highest hardness value and the damage rate was the smallest after the initiation of pitting.

Investigation on optimum protection potential of high-strength Al alloy(5456-H116) for application in ships (선박용 고강도 Al합금(5456-H116)의 최적 방식 전위결정에 관한 연구)

  • Kim Sung-Jong;Ko Jae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.157-168
    • /
    • 2006
  • Recently, interest in using Al alloys in ship construction instead of fiber-reinforced plastic (FRP) has increased because of the advantages of A) alloy ships over FRP ships, including high speed, increased load capacity. and ease of recycling. This paper investigated the mechanical and electrochemical properties of Al alloys in a slow strain rate test under various potential conditions. These results will provide reference data for ship design by determining the optimum protection potential regarding hydrogen embrittlement and stress corrosion cracking. In general, Al and Al alloys do not corrode on formation of a film that has resistance to corrosion in neutral solutions. In seawater, however, $Cl^-$ ions lead to the formation and destruction of a Passive film. In a potentiostatic experiment. the current density after 1200 sec in the Potential range of $-0.68\~-1.5\;V$ was low. This low current density indicates the protection potential range. Elongation at an applied potential of 0 V was high in this SSRT. However, corrosion protection under these conditions is impossible because the mechanical properties are worse owing to decreased strength resulting from the active dissolution reaction in parallel parts of the specimen. A film composed of $CaCO_3\;and\;Mg(OH)_2$ confers corrosion resistance. However, at potentials below -1.6 V forms non-uniform electrodeposition coating, since there is too little time to form a coating. Therefore, we concluded that the mechanical properties are poor because the effect of hydrogen gas generation exceeds that of electrodeposition. Comparison of the maximum tensile strength, elongation, and time to fracture indicated that the optimum protection potential range was from -1.45 to -0.9 V (SSCE).

Cavitation Characteristics on Impeller Materials of Centrifugal Pump for Ship in Sea Water and Fresh Water (해수와 청수환경에서 선박용 원심펌프 임펠러 재료의 캐비테이션 특성)

  • Im, Myeong-Hwan
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.218-224
    • /
    • 2011
  • The fresh water and sea water in present ships is used as cooling water for marine engine. Therefore, corrosion damage in seawater system is frequently occurred. In particular, in the impeller of pump, the performance and material span due to the corrosion and cavitation erosion has adverse effects. Most of the pump impellers in vessels are used Cu-Al alloy. Cu-Al alloy which having the excellent mechanical properties and corrosion resistance is widely used in marine environments. However, despite the excellent characteristics, the periodic replacement parts due to the cavitation damage in seawater is vulnerable to economic viewpoint. In this study, Cu-Al alloy used with impeller for centrifugal pump were conducted various experiments to evaluate its characteristics in seawater and fresh water solutions. As an electrochemical result, the dynamic conditions that exposed to the cavitation environment presented high corrosion current density with collapse of the cavity compared with the static conditions. Cavitation test results, the weightloss and weightloss rate in fresh water are observed more than those of seawater.

Mechanical and Electrochemical Characteristics of Welding Parts Surface for Friction Stir Welded 5456-H116 Al Alloy (마찰교반용접한 5456-H116 알루미늄 합금 용접부 표면의 기계적 및 전기화학적 특성)

  • Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.156-162
    • /
    • 2008
  • Small FRP(fiber-reinforced polymer) fishing ships have numerous problems with the point of the environmental and recycling perspectives. In light of these aspects, aluminum can be used as a material for ship building. It is environmental friendly, easy to recycle, and provides a high added value to fishing boats. In this paper, we report on mechanical and electrochemical characteristics of welding parts for friction stir welded 5456-H116 Al alloy. In friction stir welded at various traveling speeds under the rotation speed of 500 RPM, the best characteristics presented in traveling speed of 15mm/min. The anodic polarizations of base metal and welding metal were observed tendency which current density from the open circuit potential suddenly increase. The cathodic polarization presented concentrated polarization caused by the dissolved oxygen reduction reaction and activation polarization caused by hydrogen generation. From result of Tafel analysis, the corrosion potential of 5456 alloy(Base metal) was lower than that of friction stir welded part, as were its corrosion current densities.