• Title/Summary/Keyword: Al alloy metal

Search Result 575, Processing Time 0.028 seconds

Effects of Sand Blasting on TiAlN Coating on WC Hard Metal Alloy Tip (WC위 TiAlN 코팅층에 미치는 Sand Blasting 처리의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.54-61
    • /
    • 2021
  • The effect of the sand blasting before TiAlN coating in the manufacture of WC hard metal alloy tips have been studied. For four different tips, according to the status of processing of the sand blasting and the coating, residual stress measurement by X-ray diffraction and several tests for mechanical properties have been conducted. The results suggest that there was no difference in static mechanical properties, such as hardness, surface roughness and elastic modulus, between two coatings. Furthermore, compressive residual stress was generated equally on their surfaces. Additionally, the compressive residual stress in substrate WC was found to increase greatly when subjected to sand blasting treatment. However, the compressive residual stress decrease after coating regardless of sand blasting treatment. Nevertheless, it is confirmed that the compressive residual stress generated in the coating after sand blasting is less than that in the non-sandblasting coating. This was attributed to the plastic deformation occurring in the WC substrate during coating after sand blasting. In contrast to the scratch test results, sand blasting was assumed to have a negative effect on the adhesion between the coating and substrate. This is because there is a high possibility of microcracks due to plastic deformation in the WC substrate under the coating after sand blasting.

Transformation Behavior on Heat Treatment Condition in Grain-Refined Cu-Zn-Al Shape Memory Alloy (결정립 미세화된 Cu-Zn-Al 형상기억합금의 열처리 조건에 따른 변태거동)

  • Kang, J.W.;Jang, W.Y.;Yang, G.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.34-43
    • /
    • 1991
  • A small amount of misch metal and/or Zr was added as a dopant to 70.5wt----Cu-26wt----Zn-3.5wt----Al shape memory alloy in order to study the effect of grain refinement and heat treatments on the transformation behavior, stabilization of martensite, and shape memory ability. It was found that the addition of misch metal and Zr was very effective for reducing the grain size. The fracture mode has been changed from intergranular brittle fracture to ductile fracture with void formation and coalescence by the addition of misch metal and Zr. Aging of the ${\beta}$-phase decreases the $M_s$ temperature, but that of the martensite phase increases the $A_s$ temperature. The hysteresis of transformation temperature ${\Delta}T(A_s-M_s)$ has an increasing tendancy by grain refinement. The crystal structure of martensite was identified as monoclinic structure. As the grain size decreased, martensite stabilization more easily occured and the shape, memory ability has been reduced by the grain size refined.

  • PDF

Chromate Conversion Coating on 3D Printed Aluminum Alloys (3D 프린팅으로 제조한 알루미늄 합금의 크로메이트 코팅)

  • Shin, Hong-Shik;Kim, Hyo-Tae;Kim, Ki-Seung;Choi, Hye-Yoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.109-115
    • /
    • 2022
  • The demand for metal 3D printing technology is increasing in various industries. The materials commonly used for metal 3D printing include aluminum alloys, titanium alloys, and stainless steel. In particular, for applications in the aviation and defense industry, aluminum alloy 3D printing parts are being produced. To improve the corrosion resistance in the 3D printed aluminum alloy outputs, a post-treatment process, such as chromate coating, should be applied. However, powdered materials, such as AlSi7Mg and AlSi10Mg, used for 3D printing, have a high silicon content; therefore, a suitable pretreatment is required for chromate coating. In the desmut step of the pretreatment process, the chromate coating can be formed only when a smut composed of silicon compounds or oxides is effectively removed. In this study, suitable desmut solutions for 3D printed AlSi7Mg and AlSi10Mg materials with high silicon contents were presented, and the chromate coating properties were studied accordingly. The smut removal effect was confirmed using an aqueous desmut solution composed of sulfuric, nitric, and hydrofluoric acids. Thus, a chromate coating was successfully formed. The surfaces of the aluminum alloys after desmut and chromate coating were analyzed using SEM and EDS.

Electrochemical Evaluation of Corrosion Properties of Aluminum Alloy as a Sacrificial Anode for Offshore Structure Protection (해양구조물의 방식을 위한 알루미늄 합금의 희생양극적 부식 특성의 전기화학적 평가)

  • Rhee, Jin-Ho;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.2
    • /
    • pp.68-72
    • /
    • 2015
  • The corrosion behavior of metals and alloys for the safety of offshore structures in seawater was investigated for the application of sacrificial anodes. The experiments were focused on the polarization behaviors and the surface morphology of each metal after experiments. Pure Zn, pure Al (Al1050), Al alloys (Al5052, Al6061), Mg alloys (AZ31, AZ91D) and steel (SCM440) were assessed in 3.5% sodium chloride solution by means of potentiodynamic polarization to verify the galvanic corrosion potential ($E_{couple}$). Potentiostat plots were plotted to compare the surface and corrosion current density ($i_{couple}$) of metals as sacrificial anodes in seawater to protect steel alloy as a cathode. Al alloys showed the best performance as a sacrificial anode, on the other hand, Mg alloys showed overprotection behavior. The surface morphologies of sacrificial anodes were observed by FESEM and compared.

Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets (Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석)

  • Lee, Jae-Won;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

Aluminum Brazing and Its Principle (알루미늄의 브레이징과 원리)

  • Lee, Soon-Jae;Jung, Do-Hyun;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • Aluminum alloys have been widely used in many fields such as electronic, structure, aero-space and vehicle industries due to their outstanding thermal and electrical conductivity as well as low cost. However, they have some difficulties for using in brazing process because of the strong oxide layer of $Al_2O_3$ on the surface of Al alloy. In addition, their melting point is similar to that of brazing filler metal resulting in thermal damage of Al alloys. Therefore, it is very important to understand the brazing principles, filler metal and its properties such as wetting, capillary flow and dissolution of base metal in the Al brazing process. This paper reviews the brazing principles, aluminum alloys, and brazing fillers. In the case of brazing principle, some formula was used for calculation of capillary force and the dissolution to obtain the best condition of Al brazing. In addition, the advanced research trends in Al brazing were introduced including thermal treatment, additive for improving property and decreasing melting point in Al brazing process.

A Study on the Welding Behavior of A3003 Aluminium Alloy Thin Sheet by Nd : YAG Laser Beam (박판 A3003 Al합금의 Nd : YAG 레이저빔 용접에 관한 연구)

  • 허인석;김병철;김도훈;김진수;이한용
    • Laser Solutions
    • /
    • v.4 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • This work was carried out to investigate the welding behavior of thin A3003 Al alloy sheets by Nd : YAG laser beam. Considering bead shape and mechanical properties, the laser pulse shapes selected were two kinds of 2-division and 3-division by varying power level and pulse duration. In order to obtain optimum conditions, the factorial design method and central composite design method were applied. Tensile test, optical microscopy, micro hardness test and TEM analysis were performed. Due to the annealing caused by thermal effect during laser welding, precipitates were coarsended. The HAZ was softened and failed during tensile test. The hardness of HAZ was lower than that of base metal, since the heat input relieved the work hardening effect and caused grain growth.

  • PDF

THE EVALUATION OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDEDAL-MG-SI ALLOY

  • Lee, Won-Bae;Yeon, Yun-Mo;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.499-504
    • /
    • 2002
  • The microstructural change associated with the hardness profile in friction stir welded, age-hardenable 6005 Al alloy had been evaluated. Frictional heat and plastic flow during friction stir welding created the fine recrystallized grain (Stir Zone, SZ), the elongated and recovered grain (Thermo-Mechanical Affected Zone, TMAZ) in the weld zone. Heat affected zone (HAZ), which could be only identified by hardness test because there is no difference in the grain structure compared with that of the base metal, was formed beside the weld zone. A softened region had been formed near the weld zone during friction stir welding process. The softened region was characterized by the dissolution and coarsening of the strengthening precipitate during the friction stir welding. The sound joints of 6005 Al alloys were successfully formed under a wide range of the friction stir welding conditions.

  • PDF

Evaluation of Electrochemical Characteristic and Investigation on Optimum Condition in Friction Stir Welding for 6061-T6 Al Alloy (6061-T6 합금의 최적 마찰교반 용접 조건 규명 및 전기화학적 특성 평가)

  • Kim, Seong-Jong;Jang, Seok-Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.341-350
    • /
    • 2008
  • In friction stir welding for 6061-T6 with various traveling speed and rotation speed conditions, the best mechanical characteristics presented in traveling speed of 507 mm/min and rotation speed of 1100RPM. The maximum tensile strength and yield strength increased with the increasing of traveling speed. The result of the electrochemical characteristic evaluation in friction stir welding at optimum conditions for 6061-T6 Al alloy presented a good characteristics compare to base metal.

Effects of Sr Additions on Microstructures and Mechanical Properties in Al-10%Si-0.3%Mg Alloy (Al-10%Si-0.3%Mg 합금에서 Sr첨가가 미세조직 및 기계적 성질에 미치는 영향)

  • Kim, Kyung-Hyun;Lee, Jung-Moo;Jung, Shin-Kum
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.94-101
    • /
    • 1993
  • The effects of strontium content as modifier on microstructure and mechanical properties were studied in Al-10%Si-0.3%Mg cast alloys. There were not big differences in the form of eutectic Si particle and its morphology depending on adding amount of strontium, but the alloy modified by 0.012%Sr had shown the higher values than the alloy modified 0.038%Sr in strength, elongation and impact value.

  • PDF