• Title/Summary/Keyword: Al alloy metal

Search Result 574, Processing Time 0.03 seconds

EVALUATION OF FRICTION WELDABILITY OF TYPE 5052 ALALLOY/LOW CARBON STEEL JOINT.

  • Kim, Kyung-Kyun;Lee, Won-Bae;Yeon, Yun-Mo;Kim, Dae-Up;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.528-533
    • /
    • 2002
  • The mechanical and metallurgical properties of friction welded joints type 5052 Al alloy/A36 steel have been studied in this paper. The joint strength increased with increasing upset pressure and friction time till it reached the critical value. The joint strength was fixed at low strength compare to that of base metal in the case of increasing friction time. Microstructure of 5052 Al alloy was greatly deformed near the weld interface. The very fine and equaxied grain structure was observed at the near interface. The elongated grain was formed outside dynamic recrystallizatoin region at the peripheral part, while the A36 steel' side was not deformed. The hardness of the near interface was slightly softer than that of 5052 Al alloy base metal. The maximum softening width was about 8mm from the interface. In the present work, the friction welding condition, t$_1$=0.5sec, P$_2$=137.5MPa, showed a maximum joint strength (202MPa) when friction pressure, upset time and rotation speed were fixed at 75MPa, 5sec, 2000rev/min and these were the optimum friction welding condition of 5052Al/A36 steel joints.

  • PDF

Filling of Cu-Al Alloy Into Nanoscale Trench with High Aspect Ratio by Cyclic Metal Organic Chemical Vapor Deposition

  • Moon, H.K.;Lee, S.J.;Lee, J.H.;Yoon, J.;Kim, H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.370-370
    • /
    • 2012
  • Feature size of Cu interconnects keep shrinking into several tens of nanometer level. For this reason, the Cu interconnects face challenging issues such as increase of electro-migration, line-width dependent electrical resistivity increase, and gap-filling difficulty in high aspect ratio structures. As the thickness of the Cu film decreases below 30 nm, the electrical resistivity is not any more constant, but rather exponential. Research on alloying with other elements have been started to inhibit such escalation in the electrical resistivity. A faint trace of Al added in Cu film by sputtering was reported to contribute to suppression of the increase of the electrical resistivity. From an industrial point of view, we introduced cyclic metal organic chemical vapor deposition (MOCVD) in order to control Al concentration in the Cu film more easily by controlling the delivery time ratio of Cu and Al precursors. The amount of alloying element could be lowered at level of below 1 at%. Process of the alloy formation was applied into gap-filling to evaluate the performance of the gap-filling. Voidless gap-filling even into high aspect ratio trenches was achieved. In-depth analysis will be discussed in detail.

  • PDF

Electrochemical Corrosion Evaluation of Aluminum Alloy Weldment Prepared by GMAW Process (알루미늄 합금 GMAW 용접부의 전기화학적 방법에 의한 내식성 평가)

  • Yang, Ye-Jin;Park, Il-Cho;Lee, Jung-Hyung;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.498-503
    • /
    • 2017
  • The aim of the present study is to evaluate electrochemical corrosion characteristics of base metal and weldment of Al-Mg alloy in seawater solution. The specimen was 5mm thick 5083-H321 Al alloy plate which was butt-welded using gas metal arc welding (GMAW). To identify the types of inclusions in the weldment, the microstructural observation was performed along with Energy dispersive spectrometer (EDS) analysis. The anodic polarization experiments were performed to evaluate the corrosion characteristics. After the anodic polarization test, the corroded surface was observed by SEM(scanning electron microscope) and EDS. The result of the analysis revealed a large number of voids in the weldment, especially coarse grains and inclusions in the heat affected zone. The corrosion current density of the weldment was found to be approximately 13 times higher than that of the base metal, indicating lower corrosion resistance of the weldment due to the defects in the weldment and the heat affected zone.

Hardening Characteristics of Aluminum Alloy Surface by PTA Overlaying with Metal Powders (I) (플라즈마분체 오버레이법에 의한 알루미늄합금 표면의 경화특성에 관한 연구(I) -후막 표면 합금화층의 형성조건과 그 조직-)

  • ;中田一博;;;松田福久
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.85-101
    • /
    • 1994
  • Effect of Cr, Cu and Ni metal powders addition on the alloyed layer of aluminum alloy (AC2B) has been investigated with the plasma transferred arc (PTA) overlaying process. The overlaying conditions were 125-200A in plasma arc current, 150mm/min in process speed and 5-20g/min in powder feeding rate. Main results obtained are summarized as follows: 1) It was made clear that formation of thick surface alloyed layer on aluminum alloy is possible by PTA overlaying process. 2) The range of optimum alloying conditions were much wider in case of Cu and Ni powder additions than the case of Cr powder addition judging from the surface appearance and the bead macrostructure. 3) Alloyed layer with Cu showed almost the homogeneous microstructure through the whole layer by eutectic reaction. alloyed layers with Cr and Ni showed needle-like and agglomerated microstructures, the structure of which has compound layer in upper zone of bead by peritectic and eutectic-peritectic reactions, respectively. 4) Microconstituents of the alloyed layer were analyzed as A1+CrA $l_{7}$ eutectics, C $r_{2}$al sub 11/, CrA $l_{4}$, C $r_{4}$A $l_{9}$ and C $r_{5}$A $l_{*}$ 8/ for Cr addition, Al+CuA $l_{2}$(.theta.) eutectics and .theta. for Cu addition, and Al+NiA $l_{3}$ eutectics. NiA $l_{3}$, N $i_{2}$A $l_{3}$ and NiAl for Ni addition. 5) Concerning defect of the alloyed layer, many blow holes were seen in Cr and Ni additions although there was lesser in Cu addition. Residual gas contents in blow hole for Cu and Ni alloyed layer were confirmed as mainly $H_{2}$ and a littie of $N_{2}$ Cracking was observed in compound zone of the alloyed layer in case of Cr and Ni addition but not in Cu alloyed layer.r.r.

  • PDF

Wear Characterization of $Al/Al_2O_3$ Composites Reinforced with Hybrid of Carbon Fibers and SiC Whiskers (탄소섬유와 SiC 휘스커를 혼합한 $Al/Al_2O_3$ 복합재료의 마멸특성)

  • 봉하동;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1619-1629
    • /
    • 1995
  • The Al/Al$_{2}$O$_{3}$ SiC and Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites (MMCs) were fabricated by squeeze infiltration method. Uniform distribution of reinforcements were found in the microstructure of metal matrix composites. Mechanical tests were carried out under various test conditions to clearly identify mechanical behavior of MMCs, and the wear mechanism of Al/Al$_{2}$O$_{3}$/(SiC or C) hybrid metal matrix composites were investigated. The tensile strength and hardness of hybrid composites was resulted in increasing compared with those of the unreinforced matrix alloy. Wear resistance was strongly dependent upon kinds of fiber, volume fraction and sliding speed. The wear resistance of metal matrix composites was remarkably improved by the addition of reinforcements. Especially, the wear resistance of the hybrid composites of carbon fibers was more effective than in the composites reinforced with alumina and SiC whiskers of reinforcements. This was due to the effect of carbon fiber on the solid lubrication. Wear mechanisms of hybrid composites were suggested from wear surface analyses. The major wear mechanism of hybrid composites was the abrasive wear at low to intermediate sliding speed, and the melting wear at intermediate to high sliding speed.

High Current Arc Welding Technology of Aluminum Alloy (알루미늄 합금의 대전류 아크용접 기술)

  • Choi, Young-Bae;Kang, Mun-Jin;Kim, Dong-Cheol;Hwang, In-Sung
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • Aluminum alloy, Al5083-O, is one of candidate materials for the LNG storage tank, because of its excellent weldability, cryogenic characteristics, and corrosion resistance. The good weldability of Al5083-O is very important in LNG storage tank manufacturing. In this study, high current metal inert gas(MIG) welding process was used to get one pass welding of thick plate aluminum alloy. Bead on plate(BOP) welding was performed to evaluate the effect of welding conditions on the height of bead and depth of penetration. The optimum welding conditions were derived to get one pass welding of the thickness of 14.5mm. The mechanical properties of the welded joint were evaluated. The cross-sectional macro test, tensile test, and bending test satisfied the class rule.

A Study on the Crystallization Behavior of Al85Ce5Ni10 Amorphous Ribbon (Al85Ce5Ni10 비정질 리본의 결정화 거동에 관한 연구)

  • Moon, J.T.;Jo, W.M.;Shin, B.M.;Lee, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.236-243
    • /
    • 1995
  • Since amorphous alloys have been known to have better mechanical and chemical properties than crystalline alloys of the same composition, a great number of studies on the formation of Al-based amorphous alloys have been carried out actively. However, little has been obtained about the effect of Rare-Earth metal and Transition metal addition on amorphous phase formed by melt spinning method. This study included fabrication of amorphous alloy $Al_{85}Ce_5Ni_{10}$ by melt spinning methods and DTA, XRD, TEM analysis to determine crystalization behavoir. Annealing treatments were carried out in Ar atmosphere under isothermal and nonisothermal conditions. The diffraction pattern of non-heated ribbons showed broad form characteristic of glass metallic alloy. The crystallization of amorphous $Al_{85}Ce_5Ni_{10}$ takes place eutedtoidly by homogeneous formation of Al and MS-1, followed by precipitation of the $Al_{11}Ce_3$ and later $MS-1{\rightarrow}Al_3Ni$ transformation.

  • PDF

Analysis of Microstructure and Mechanical Properties According to Heat Treatment Conditions in GMAW for Al 6061-T6 Alloy (Al 6061-T6 합금의 MIG 용접 후 열처리조건에 따른 미세조직 및 기계적 물성 분석)

  • Kim, Chan Kyu;Cho, Young Tae;Jung, Yoon Gyo;Kang, Shin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.34-39
    • /
    • 2016
  • Recently, aluminum alloy has used various industry, such as automobile, shipbuilding and aircraft because of characteristics of low density and high corrosion resistance. Al 6061-T6 is heat treatment materials so it has high strength and mostly used for assembly by mechanical fastening such as a bolting and riveting. In GMA (Gas Metal Arc) welding of alloy, some defects which are hot cracking, porosity, low-mechanical properties and large heat affected zone is generated, because of high heat conductivity. It reduces mechanical properties. In this study, the major factor effected on properties are analyzed after welding in Al 6061-T6 in GMAW, then optimize heat treatment conditions. Plate of Al 6061-T6 with a thickness of 12 mm is welded in V groove and applied welding method is butt joint. Mechanical properties and microstructure are analyzed according to heat treatment condition. Tensile strength, microstructure and Hardness are evaluated. Result of research appears that Al 6061-T6 applied heat treatment show outstanding mechanical properties.

Influence of the Magnesium Content on the Explosion Properties of Mg-Al Alloy Dusts (Mg-Al합금 분진의 폭발특성에 미치는 마그네슘 성분의 영향)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.1-6
    • /
    • 2012
  • Using the Siwek 20 L spherical explosion vessel, the explosion properties have been examined to understand the influence of magnesium content in Mg-Al alloy dusts with different concentration. For this purpose, the Mg-Al alloy dusts (volume mean diameter : $151{\sim}160{\mu}m$) with magnesium content ratio were used. As the results, the increase of Mg content in Mg-Al alloy causes an decreased minimum explosion concentration and an increased maximum explosion pressure. Also the maximum explosion pressure and maximum rate of pressure rise in Mg-Al alloy dusts mainly depended on the dust concentrations. However, for the explosion index (Kst) of Mg-Al (40:60 wt%), Mg-Al (50:50 wt%) and Mg-Al (60:40 wt%), it was founded to increase the Kst with increasing of magnesium content ratio.

A Nanoindentation Based Study of Mechanical Properties of Al-Si-Cu-Mg Alloy Foam Cell Wall (나노인덴테이션에 의한 Al-Si-Cu-Mg 합금 폼 셀 벽의 기계적 물성 연구)

  • Ha, San;Kim, Am-Kee;Lee, Chang-Hun;Lee, Hak-Joo;Ko, Soon-Gyu;Cho, Seong-Seock
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.382-387
    • /
    • 2004
  • Nanoindentation technique has been used to measure the mechanical properties of aluminium alloy foam cell walls. Al-Si-Cu-Mg alloy foams of different compositions and different cell morphologies were produced using powder metallurgical method. Cell morphology of the foam was controlled during production by varying foaming time and temperature. Mechanical properties such as hardness and Young's modulus were calculated using two different methods: a continuous stiffness measurement (CSM) and an unloading stiffness measurement (USM) method. Experimental results showed that hardness and Young's modulus of Al-5%(wt.)Si-4%Cu-4%Mg (544 alloy) precursor and foam walls are higher than those of Al-3%Si-2%Cu-2%Mg (322 alloy) precursor and foam walls. It was noticed that mechanical properties of cell wall are different from those of precursor materials.

  • PDF