• Title/Summary/Keyword: Al Hot Forming

Search Result 100, Processing Time 0.024 seconds

Assessement of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tube (열간 후방압출된 Ti-6Al-4V 튜브의 성형결함 해석)

  • 염종택;심인규;나영상;박노광;홍성석;심인옥
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.347-350
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. To predict the forming-defects such as shear band, inner cracks or surface cracks, dynamic material model(DMM) including Ziegler's instability criterion and modified Cockcroft-Latham fracture criterion(C-L model) were used. These models were coupled to the internal variables generated from FE analysis. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The simulation results for the backward extrusion were compared with the experimental observations.

  • PDF

Determination of Optimum Blank Shape to Minimize the Root Gap during TIG Welding in Hot Curvature Forming of Al5083 Thick Plate (열간 곡면성형된 Al5083 후판의 TIG 용접 시 루트갭 최소화를 위한 최적 블랭크 형상 결정)

  • Lee, Jeong Min;Ko, Dae Hoon;Lee, Kyung Hun;Lee, Chan Joo;Kim, Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.815-823
    • /
    • 2013
  • The hot curvature forming of large aluminum plates is a process used to produce spherical liquefied natural gas (LNG) tanks. In this study, we describe a method to determine the optimum shape of blanks to minimize the root gap in the forming process. The method proposed in this study was applied to a small-scale model for thick plates with a curvature of 1500 mm and thickness of 6 mm. First, the shape of the curved shells was determined as the target shape, and then a coordinate transform was used to determine the optimum blank shape, which was then iteratively modified using the results of finite element method (FEM) simulations, including heat transfer, until the shape error was minimized. Experiments in forming using Al5083 thick plate were carried out, showing that the method can determine the optimum blank shape within an allowable root gap of 0.1 mm.

Electrochemical Corrosion and Hydrogen Diffusion Behaviors of Zn and Al Coated Hot-Press Forming Steel Sheets in Chloride Containing Environments (아연 및 알루미늄이 도금된 Hot-Press Forming 강의 염화물 환경 내 전기화학적 부식 및 수소확산거동)

  • Park, Jin-seong;Lee, Ho Jong;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.286-294
    • /
    • 2018
  • Hot-press forming(HPF) steel can be applied successfully to auto parts because of its superior mechanical properties. However, its resistances to aqueous corrosion and the subsequent hydrogen embrittlement(HE) decrease significantly when the steel is exposed to corrosive environments. Considering that the resistances are greatly dependent on the properties of coating materials formed on the steel surface, the characteristics of the corrosion and hydrogen diffusion behaviors regarding the types of coating material should be clearly understood. Electrochemical polarization and impedance measurements reveal a higher corrosion potential and polarization resistance and a lower corrosion current of the Al-coating compared with Zn-coating. Furthermore, it was expected that the diffusion kinetics of the hydrogen atoms would be much slower in the Al-coating, and this would be due mainly to the much lower diffusion coefficient of hydrogen in the Al-coating with a face-centered cubic structure. The superior surface inhibiting effect of the Al-coating, however, is degraded by the formation of local cracks in the coated layer under severe stress conditions, and therefore further study will be necessary to gain a clearer understanding of the effect of cracks formed on the coated layer on the subsequent corrosion and hydrogen diffusion behaviors.

A Study on the Creation of Porosity in Al Alloy(AA2014) Large Rod Preforms by Spray Forming (분무성형법에 의한 Al 합금(AA2014) 대형봉상성형체 제조시 기공발생에 관한 연구)

  • Shin, Don-Soo;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.494-501
    • /
    • 1997
  • In order to manufacture large rod preforms of 2014 Al alloy with a good mechanical property by spray forming method, it was spray-formed at a droplet temperature of $715^{\circ}C$, a droplet flight distance of 400mm, and a spraying angle of $35^{\circ}$. The rod preforms were extruded at $397^{\circ}C$ with the die temperature of $420^{\circ}C$ under the hot extrusion ratio 21:1 and T6 heat treatment was performed. The 2014 Al alloys cast by hot top process were also extruded and heat-treated at the same condition as a reference material. Microstructural observation and tensile test were carried out to investigate the effects of extrusion on microstructure and mechanical property of spray-formed Al alloy. Spray-formed Al alloys had many porosities due to inappropriate process conditions such as long droplet flight distance and low droplet temperature but have fine equiaxed grain. These porosities were reduced with decreasing in grain size by hot extrusion. Ultimate tensile strength and yield strength of spray formed-extruded 2014 Al alloy were inferior to those of the normal cast-extruded 2014 Al alloy, but elongations were superior. The control of porosity was important to get spray formed preform with a good mechanical property.

  • PDF

Hot Forging Process of High Strength Ti-6Al-4V Bolt (Ti-6Al-4V 고강도 볼트 성형 기술 개발)

  • Kim, Jeoung-Han;Lee, Chae-Hoon;Hong, Jae-Keun;Kim, Jae-Ho;Yeom, Jong-Taek
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.87-90
    • /
    • 2008
  • Since fastener bolt for airplane require high specific strength and corrosion resistance, Ti-6Al-4V alloy is widely used. However, the Ti-6Al-4V bolt is generally manufactured by cutting and rolling because of their poor workability. The aim of present work is to develop hot forming technology for high strength Ti-6Al-4V. Various heat-treatments were applied to specimen in order to increase hot-workability and prevent galling with die Multiple forging were simulated with FE code to determine optimum process parameters including specimen temperature, strain rate, local strain, and thermal shrinkage. Forged samples were heat-treated again to increase their mechanical properties.

  • PDF

Effect of Thermal Oxidation Coating on the Hot Forging Process of High Strength Ti-6Al-4V Bolt (Ti-6Al-4V 고강도 볼트의 성형성에 미치는 표면산화효과)

  • Kim, Jeoung-Han;Lee, Chae-Hoon;Hong, Jae-Keun;Kim, Jae-Ho;Yeom, Jong-Taek
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.251-255
    • /
    • 2009
  • Since fastener bolt for airplane require high specific strength and corrosion resistance, Ti-6Al-4V alloy is widely used. However, the Ti-6Al-4V bolt is generally manufactured by cutting and rolling because of their poor workability. The aim of present work is to develop hot forming technology for high strength Ti-6Al-4V. Various heat-treatments were applied to specimen in order to increase hot-workability and prevent galling with die. Multiple forging were simulated with FE code to determine optimum process parameters including specimen temperature, strain rate, local strain, and thermal shrinkage. Forged samples were heat-treated again to increase their mechanical properties.

The Effect of Mechanical Property of Tailor Welding Blank and Hot Press Forming Process by the Different Anti-oxidation Coating Treatment on Boron-steel Sheet (핫프레스포밍 공정에서 내산화 코팅처리가 TWB 용접부 특성에 미치는 영향)

  • Kim, Sang-Gweon;Lim, Ok-Dong;Lee, Jae-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.6
    • /
    • pp.283-291
    • /
    • 2012
  • In order to increase the anti-oxidation property during the tailor welding blanked hot press forming process for a high strength boron steel sheet, we performed a different coating method on the boron-steel sheet such as 87% Al - 13% Si and Fe - 8.87 Zn dipping plating procedure. However, during laser welding process, the Al-Si coated steel sheet has showed a low tensile strength and about half value of elongation than the original boron-steel sheet. Aluminum and silicon, elements of coating layer were diffused into the boron-steel matrix and have shown a low strength result than non-coated specimen. On the other hand, Zinc-coated boron-steel has expectedly showed a excellent tensile strength and micro-harness value in the welded area like original boron-steel.

A Study on the Micro Vibration Forming of Al-based Superplastic Alloy and Zr-based Bulk Metallic Glass (Al계 초소성합금과 Zr계 비정질합금의 마이크로 진동성형에 관한 연구)

  • Son, Seon-Cheon;Park, Kyu-Yeol;Na, Young-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.193-200
    • /
    • 2007
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Al5083 superplastic alloy with very small grains has a great advantage in achieving micro deformation under low stress due to its relatively low strength at a specific high temperature range. Micro forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, the micro formability of Al5083 superplastic alloy and bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$, was investigated with the specially designed micro vibration forming system using pyramid-shape, V-shape and U-shape micro die pattern. With these dies, micro vibration forming was conducted by varying the applied load, time. Micro formability was estimated by comparing the hight of formed shape using non-contact surface profiler system. The vibration load effect to metal flow in the micro die and improve the micro formability of Al5083 superplastic alloy and $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG).

Performance of Hot-dip Zn-6%Al-3%Mg Alloy Coated Steel Sheet as Automotive Body Material

  • Shimizu, Takeshi;Asada, Hiroshi;Morikawa, Shigeru
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.74-80
    • /
    • 2010
  • For the purpose of applying a hot-dip Zn-6mass%Al-3mass%Mg alloy coated steel sheet (ZAM) to automotive body materials, a laboratory study of the general properties required for inner and outer panels of automotive bodies was performed. Even with only light coating weight, ZAM showed an excellent corrosion resistance in terms of both cosmetic and perforation corrosion compared to the currently used materials for automotive bodies, GI70 and GA45. In our study, it was confirmed that ZAM exhibits as good as or better properties than GI70 in terms of spot weldability and press formability. Furthermore, since the same corrosion resistance can be achieved with less coating weight by applying ZAM, laser weldability is better than GI and GA.

Al-hot Dipping Followed by High-Temperature Corrosion of Carbon Steels in Air and Ar-0.2%SO2 Gas

  • Abro, Muhammad Ali;Jung, Seung Boo;Lee, Dong Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.128-129
    • /
    • 2015
  • Al-rich coatings were prepared on hot rolled low carbon steel by hot dipping method in molten Al-bath to investigate the corrosion resistance with the possible outcomes and defects of aluminized coatings in air and $Ar-0.2%SO_2$ mixed gases. Coating microstructure was composed of an inner Al-Fe intermetallic layer and outer Al-rich layer. Aluminum oxidized preferentially to the thin, outer, protective ${\alpha}-Al_2O_3$ layer, without forming the nonprotective iron/sulfur-oxide layer after heating at $800^{\circ}C$ for 20 h, in both the gases and provided the resistance against corrosion.

  • PDF