• 제목/요약/키워드: Al Alloy for Ship's

검색결과 11건 처리시간 0.027초

다양한 용접기술을 적용한 선박용 알루미늄합금의 기계적 특성 평가 (Evaluation of Mechanical Characteristic of Al Alloy for Ship's Welded with Various Welding Techniques)

  • 김성종;장석기;한민수
    • 해양환경안전학회지
    • /
    • 제13권3호
    • /
    • pp.223-228
    • /
    • 2007
  • 본 논문은 선박용 알루미늄 합금에 대하여 TIG, MIG 그리고 로봇을 이용한 용접 등과 같은 다양한 용접기술을 적용하여 기계적 특성을 평가하였다. TIG 용접을 실시하였을 경우는 항복강도, 인장강도 그리고 연신율은 모재에 비하여 각각 83.9%, 64.6% 그리고 21.9%를 나타냈다. MIG 용접은 ER5356 용접봉을 사용하여 용접한 경우 ER5183 용접봉을 사용한 경우에 비하여 기계적 특성이 대략 2-4% 정도 개선된 효과가 관찰되었다. 또한 로봇을 이용한 용접을 실시한 경우는 5456-H116 모재에 비하여 5083O 모재의 경우가 양호한 기계적 특성을 나타냈다.

  • PDF

전기방식시 적용되는 희생양극의 성능개발에 대한 연구 (A Study on the Sacrificial Anode for Imparting High Capabilities to Cathodic Protection)

  • 김성종
    • 수산해양기술연구
    • /
    • 제34권1호
    • /
    • pp.37-42
    • /
    • 1998
  • Al alloy anode is mostly used for protecting marine structures such as pier steel piles and ship's body. Recently it has been reported that the life of Al alloy anode has been shortened significantly than the original design life. It is suggested that the suspected reasons for this problem mentioned above seems to be the improper protection design of alloy of anode on sea water regardless of environmental facotrs such as flow rate, temperature, contamination degree etc. However there is few paper about to the sea water contamination degree affecting to the life of Al alloy anode. In this study, the property of Al alloy anode was investigated as a parameter of sea water contamination degree such as variation of pH 2, 4, 6, 8, 10 and each sea port's contaminated waters.

  • PDF

해수 유속 변화에 따른 Al5052-O와 Al6061-T6 알루미늄 합금의 침식부식 특성 (Erosion Corrosion Characteristics of Al5052-O and Al6061-T6 Aluminum Alloys with Flow Rate of Seawater)

  • 김영복;김성종
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.292-299
    • /
    • 2019
  • The hull material of a high-speed ship may cause erosion damage from fluid impact. When physical erosion and electrochemical corrosion combine, erosion corrosion damage occurs. The aluminum ship is vulnerable to erosion corrosion because it can be operated at high speed. Thus, in this study, Al5052-O and Al6061-T6 aluminum alloys for the marine environment were selected as experimental materials. The erosion corrosion resistance of Al5052-O and Al6061-T6 aluminum alloys in seawater was investigated by an erosion test and potentiodynamic polarization test at the various flow rate (0 m/s, 5 m/s, 10 m/s, 15 m/s, 20 m/s). Erosion corrosion characteristics were evaluated by surface analysis, 3D analysis, SEM analysis, and the Tafel extrapolation method. The results of surface damage analysis after the erosion test showed that Al6061-T6 presented better erosion resistance than Al5052-O. The results of the potentiodynamic polarization test at the various flow rate, corrosion current density by Tafel extrapolation presented lower values of Al6061-T6 than Al5052-O. Al5052-O showed more surface damage than Al6061-T6 at all flow rates. Consequently, Al6061-T6 presented better erosion corrosion resistance than Al5052-O. The results of this study are valuable data for selecting hull material for an aluminum alloy vessel.

해수용액에서 선박용 Al-Mg-Si 합금의 전기화학적 실험에 의한 방식전위 결정 (The Protection Potential Decision by Electrochemical Experiment of Al-Mg-Si Alloy for Ship in Seawater)

  • 정상옥;박재철;한민수;김성종
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.48-55
    • /
    • 2010
  • The many vessels are built with FRP(Fiber-Reinforced Plastic) material for small boats and medium vessels. However, FRP is impossible to be used for recyclable material owing to environmental problems and causes large proportion of collision accidents because radar reflection wave is so weak that large vessels could not detect FRP ships during the sailing. Hence, Al alloy comes into the spotlight to solve these kinds of problems as a new-material for next generation instead of FRP. Al alloy ships are getting widely introduced for fish and leisure boats to save fuel consumption due to lightweight. In this study, it was selected 6061-T6 Al alloy which are mainly used for Al-ships and carried out various electrochemical experiment such as potential, anodic/cathodic polarization, Tafel analysis, potentiostatic experiment and surface morphologies observation after potentiostatic experiment for 1200 sec by using the SEM equipment to evaluate optimum corrosion protection potential in sea water. It is concluded that the optimum corrosion protection potential range is -1.4 V ~ -0.7 V(Ag/AgCl) for 6061-T6 Al alloy, in the case of application of ICCP(Impressed current cathodic protection), which was shown the lowest current density at the electrochemical experiment and good specimen surface morphologies after potentiostatic experiment for Al-Mg-Si(6061-T6) Al alloy in seawater environment.

선체 재료용 Al-Mg 합금과 Al-Mg-Si 합금의 해수 내 캐비테이션 특성 (Cavitation Characteristics of Al-Mg and Al-Mg-Si Alloy for Ship in Sea Water)

  • 김성종;김규환;이승준
    • Corrosion Science and Technology
    • /
    • 제10권4호
    • /
    • pp.136-142
    • /
    • 2011
  • Al alloys have been used widely for commercial and military ships in most ocean countries since mid-1950s, and the value as light metal with high mechanical strength has been proven. As the safety and fuel efficiency of Al ships have improved, she can carry more freight, sail faster and travel longer distances. Furthermore, in the shipbuilding industry, Al alloys are applied as structural materials for ships to various areas including the deck of luxurious cruises, battleships and leisure ships. In addition, Al alloys are being spotlighted as environmental-friendly material as they can be recycled even after end of lifespan. However, Al alloys for ships must be carefully selected after considering corrosion resistance, endurance, strength, and weldability in sea water environment. Al alloys to satisfy these conditions are used widely include 5000 series Al-Mg alloy and 6000 series Al-Mg-Si alloy. Thus, this study selected and evaluated the cavitation characteristics of the 5000 series Al alloys that are used in hulls that directly contact seawater and the 6000 Al alloys that are used in the upper structures of ships. Results of cavitation test with time, weightloss and cavitation rate of 5456-H116 showed the smallest damage among 5052-O, 5456-H116 and 6061-T6.

대형 고속 선박용 러더의 내침식, 부식 특성 향상을 위한 용사 코팅막 (Thermal Spray Coating Layer for Improvement of Erosion and Corrosion Resistance Applicable to Large Sized High Speed Ship's Rudder)

  • 이유송;허성현;김진홍;김여중;배일용;이명훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.196-197
    • /
    • 2011
  • Rudder, one of the most important component in the marine vessel, is now being decreased life time to serve due to cavitation erosion, vortex current, high flow speed suffer from ship speed going up dramatically. In this study, 10 kinds of thermal spray coating materials(2 of Zn alloy series, 3 of Al alloy series, 3 of Cu alloy series, 2 of STS alloy series) are chosen to apply on specimens and analyze micro structure, metallic composition, properties(porosity, oxidation) by using visual observation, XRD, EDX etc.. Additionally, to refine the characteristic of corrosion endurance for thermal spray coating layer, compared with thermal spray process and 5 kinds of heavy duty painting and AC paint (Anti-Corrosion Paint). Based on above mentioned experimental results, a priority of all coated specimens on corrosion-erosion endurances finalized and summarized there by desirable composition and process of thermal sprayed material properly.

  • PDF

A Study on the Dissipation Energy of Plate due to Cutting

  • Lee, J. W.;Hong, S. J.
    • Journal of Ship and Ocean Technology
    • /
    • 제1권1호
    • /
    • pp.48-56
    • /
    • 1997
  • This paper deals with the energy dissipation of ductile metal plate due to cutting. By using nondimensional analysis, we present that the dissipation energy of tearing behaviour can be formulated as a function of slenderness ratio expressed by cutting length, yield stress, plate thickness and elastic modulus. The validity of the proposed formula for Al-alloy, copper and mild steel is demonstrated by comparing the proposed formula with experimental results, which are shown in good agreements except for thick mild steel plate.

  • PDF

5083-H321 알루미늄 합금의 해수 내 전류밀도의 변화에 따른 전식 특성 연구 (Investigation on Electrolytic Corrosion Characteristics with the Variation of Current Density of 5083-H321 Aluminum Alloy in Seawater)

  • 김영복;김성종
    • 한국표면공학회지
    • /
    • 제52권1호
    • /
    • pp.23-29
    • /
    • 2019
  • Electrolytic corrosion of the ship's hull can be occurred due to stray current during welding work using shore power and electrical leakage using shore power supply. The electrolytic corrosion characteristics were investigated for Al5083-H321 through potentiodynamic polarization and galvanostatic corrosion test in natural seawater. Experiments of electrolytic corrosion were tested at various current densities ranging from $0.01mA/cm^2$ to $10mA/cm^2$ for 30 minutes, and at various applied time ranging from 60 to 240 minutes. Evaluation of electrolytic corrosion was carried out by Tafel extrapolation, weight loss, surface analysis after the experiment. In the electrolytic corrosion characteristics of Al5083-H321 as the current density increased, the surface damage tended to proportionally increase. In the current density of $0.01mA/cm^2$ for a applied long time, the damage tended to grow on the surface. In the case of $10mA/cm^2$ current density for a applied long time, the damage progressed to the depth direction of the surface, and the amount of weight loss per hour increased to 4 mg/hr.

Al어선 선체용접부의 신형상 개발 및 적용 가능성 검토 (The examination of application possibility and development of new welding joint shape for aluminum alloy)

  • 김종명;오종인;방한서
    • 대한조선학회논문집
    • /
    • 제38권1호
    • /
    • pp.99-107
    • /
    • 2001
  • 어선 제작시 어선의 고속화 및 어로작업 등에 의한 내구성을 향상시키기 위해 선각재질이 가볍고, 강도, 화재 및 해수의 부식 등에 뛰어난 재료의 사용이 요구되어지고 있다. 이러한 어선으로서는 크게 FRP어선과 Al어선으로 대별할 수 있다. 그러나 FRP어선은 가볍고 강도는 우수하나 인화성이 높아서 열에 매우 약하고 선박 제작 과정에 있어 인체에 해로운 유해성분이 발생할 뿐만 아니라, 폐선의 경우 산업폐기물로써 환경 오염에 큰 영향을 미치고 있다. 그런 반면에, Al어선은 FRP어선의 단점을 보완할 수 있는 재료로써, 고강도 및 경량화의 효과를 낼 수 있고, FRP어선보다 인화성이 낮아서 열에 강하고, 내구성이 높아 해수의 부식방지에 뛰어나므로 Al 어선의 개발이 시급한 실정이다. 그러나, 알루미늄 합금은 용접성이 좋지 않고 용접변형 및 균열이 발생하고, 건조 비용이 비싸다는 단점이 있다. 따라서, 본 연구에서는 Al 합금 접합시의 문제점 해결방안으로 용접이음부의 새로운 형상을 개발하고 개발한 신형상에 대한 역학적 거동을 규명하고자 하였다. 이를 위해, 먼저 평판 이론을 이용하여 구조부재를 단순화하여 평판, 보강판, 신형상에 대하여 해석함으로써 강도를 비교 검토하고, 이러한 결과를 토대로 자체 개발된 용접열전도 및 용접열응력 수치해석 프로그램을 사용하여 평판과 신형상의 온도분포, 용접잔류응력, 인장, 압축시의 강도를 수치시뮬레이션을 통하여 비교, 검토하였다. 또한, 인장 시험편을 제작하여 실험을 통하여 강도를 비교함으로써 신형상에 대한 적용 가능성 및 역학적 우수성을 입증하고자 하였다.

  • PDF

과하중에 의한 선박용 알루미늄 합금재의 부식피로 파괴지연에 관한 연구 (Study on the Retardation Effect of Overload on the Corrosion Fatigue Crack Propagation Al-Alloy used for the Shipbuilding)

  • 임우조;이종락;이진열
    • 한국해양공학회지
    • /
    • 제2권2호
    • /
    • pp.122-129
    • /
    • 1988
  • Recently with the rapid development in marine and shipbuliding industries such as marine structures, ship and chemical plants, there occurs much interest in the study of corrosion fatigue characteristics which was closed up an important role in mechanical design. In this study, the 5086 Al-alloy was tested by use of rotary bending fatigue tester. The retardation effect of overload on the corrosion fatigue crack propagation in sea environment was quantitatively studied. 1) Retardation effect of corrosion fatigue crack propagation is most eminent when overload ratio is 1.52, overload magnitude corresponds to about 77% and 55% of yield strength and tensile strength respectively. 2) After overload ratio 1.52 was used, retardation of corrosion fatigue crack growth rate is largely retarded and quasi-threshold stress intensity factor range($\Delta\textrm{K}_{th}$) appears. 3) According to m of experimental constant, retardation effect of corrosion fatigue crack propagation corresponds to about 25% of constant stress amplitude when overload ratio is 1.52. 4) When overload ratio 1.52 was used, retardation parameter (RP) decreases to about 0.43 and corrosion sensitivity (S)decreses to about 2.1.

  • PDF