• Title/Summary/Keyword: Al 7075 alloy

Search Result 89, Processing Time 0.022 seconds

Characterization of Superplastic Deformation Behaviors of 7075 Al Alloy (초소성 7075알루미늄 합금의 변형특성 평가)

  • 권용남;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.65-71
    • /
    • 1998
  • The superplastic deformation behaviors of 7075Al alloy have been characterized experimentally and analyzed by the internal variable theory of inelastic deformation. A simple rheological model including the grain boundary sliding has been used to interpret the superplastic deformation behaviors. A series of load relaxation and tensile tests have been carried out for 7075Al alloy at the various temperatures. The superplastic deformation of 7075Al alloy is confirmed to consist of the grain boundary sliding and accommodating grain matrix defprmation.

  • PDF

Evaluation of mechanical Characteristic according to the Filler Metal by GTA welding Process using 7075 Aluminum Alloy (알루미늄 합금 7075의 용가재에 따른 GTA용접공정의 기계적 특성 평가)

  • Son, Yeong-San;Lim, Byung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.521-526
    • /
    • 2017
  • In the GTA welding process of Al 7075 alloy using different types of filler metals, the tensile test and micro-hardness test were conducted to evaluate the mechanical characteristics. Also, the radiographic test result showed that the weld met the criterion of level 1 in accordance with KS D 0242 for verifying the welding integrity and there were no welding defects. The tensile test result obtained using Al 7075 as a filler metal showed that the material was fractured in the weld zone. The tensile strengths of the materials using Al 7075 and ER 4043 as the filler metal were about 240MPa and 253MPa, their yield strengths were about 132MPa and 120MPa and their elongation percentages were 6.6% and 13%, respectively. The micro-hardness value of the deposited metal zone when using Al 7075 as the filler metal was Hv 132. However, the micro-hardness of the material using ER4043 as the filler metal was about 24% lower than that using Al 7075. When the chemical composition of the filler metal is the same as that of the material itself, fracture can occur in the deposited metal zone. Therefore, it is not desirable to use the same material as the filler metal for the welding of Al 7075 alloy. Moreover, the use of Al-Si based ER 4043 as a filler metal is more desirable than using the same material as a filler metal for welding Al 7075.

Comparison of Conventional Hot Forging and Thixoforging of Al 7075 Alloy According to Microstructures, Formability and Hardness (Al 7075합금의 열간단조와 반응고 단조에 있어서 조직, 성형성 및 경도 특성 비교)

  • Lee, Sang-Yong;Jeon, Jae-Il;Lee, Jeong-Hwan;Lee, Yeong-Seon;Sin, Pyeong-U
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.620-630
    • /
    • 1998
  • Conventional hot forging and thixoforging of Al 7075 alloy have been compared with respect to microstructures, formability and hardness. Two distinctive temperature-strain rate ranges for hot forging of Al 7075 alloy were observed from the results of simple compression tests with strain rates of 10-3∼101 sec-1 in the temperatures between $250^{\circ}C$ and $500^{\circ}C.$ In the dynamic recovery range (low temperature-high strain rate range) multi-stage forging was necessary to form a complex shape part due to the lack of formability. In the high temperature-low strain rate range, in which dynamic recrystallization takes place a complex shaped park could be formed by single-stage forging. About 50% cold working in the SIMA process was necessary to get a fine and homogeneous microstructures. Microstructural study suggest that thixoforged Al 7075 part has fine grains and homogeneous microstructures. Its hardness number is almost same to that of conventional hot forged part after aging treatment.

  • PDF

Effect of T6 and T73 Heat Treatments on Microstructure, Mechanical Responses and High Cycle Fatigue Properties of AA7075 Alloy Modified with Mg and Al2Ca ((Mg + Al2Ca)로 개량된 AA7075 합금의 미세조직, 기계적 특성, 그리고 고주기 피로 특성에 미치는 T6 및 T73 열처리의 효과)

  • Hwang, Y.J.;Kim, G.Y.;Kim, K.S.;Kim, Shae K.;Yoon, Y.O.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.5-15
    • /
    • 2021
  • The effects of heat treatments (T6 and T73) on the microstructure, mechanical properties, and high cycle fatigue behavior of modified AA7075 alloys were investigated. A modified 7075 alloy was manufactured using modified-Mg (Mg-Al2Ca) instead of the conventional element Mg. Based on the microstructure, the average grain size was 4.5 ㎛ (T6) and 5.2 ㎛ (T73). Regardless of heat treatment, the modified AA7075 alloys consisted of Al matrix containing homogeneously distributed Al2CuMg and MgZn2 phases with reduced Fe-intermetallic compound. Room temperature tensile tests showed that the properties of modified 7075-T6 (Y.S.: 622MPa, T.S: 675MPa, elongation: 15.4%) were superior to those of T73 alloy (Y.S.: 492MPa, T.S: 548MPa, elongation: 12.8%). Experimental data show that the fatigue life of T6 was 400 MPa, about 64% of its yield strength. However, the fatigue life of T73 alloy was 330 MPa and 67%. Irrespective of the stress level, all crack initiation points were located on the specimen surface, and no inclusions acting as stress concentrators were seen. Superior mechanical properties and high cycle fatigue behavior of modified AA7075-T6 alloy are attributed to the fine grains and homogeneous distribution of small second phases such as MgZn2 and Al2CuMg, in addition to reduced Fe-intermetallic compounds.

Thixo-extrusion of Semi Solid 7075 Aluminum Alloys and Mechanical Properties of The Extrudates (반응고 7075 알루미늄 합금의 반용융 압출 및 압출재의 기계적 특성)

  • Choi, Tae-Young;Kim, Dae-Hwan;Kim, Soo-Bae;Shim, Sung-Young;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.34 no.3
    • /
    • pp.87-93
    • /
    • 2014
  • Thixo-extrusion of semi-solid 7075 aluminum alloy and the mechanical properties of its extrudates were investigated. The semisolid alloy was prepared by a cooling slope cast. In other to perform thixo-extrusion, semi-solid 7075 aluminum alloy billets were reheated at the reheating conditions reported in a previous study. The maximum extrusion pressure in thixo-extrusion was 615MPa. This was lower than that of conventional hot extrusion ($P_{max}=940MPa$) at the same extrusion conditions due to the increased fluidity of the alloy billet in the semi-solid state. The values of Rockwell hardness (scale B) at the extrusion direction of the as thixoextruded bar were 48~53HRB and the difference in Rockwell hardness between the transverse direction and the extrusion direction was 5HRB or less. The results show that thxio-extrusion of semi-solid 7075 Al alloy improves the workability and anisotropic with the extrusion direction compared with hot extrusion of the conventional alloy.

Application development of 7050Al alloy in small arms. (소화기용 7050 Al합금소재의 적용성 개발)

  • 김헌규;최중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1093-1097
    • /
    • 1996
  • The Substitution development of 7075-T6 Al alloy to 7050-T74 Al alloy in small arms to improve anti-stress corrosion cracking was processed along with mass productivity consideration. To meet 7050 Al alloy material characteristics Indirect extrusion type was adopted and local heating above recrystalization temperature in forging process had to be avoided. The T74 aging treatment was 12$0^{\circ}C$ -6hrs and 175$^{\circ}C$ -12hrs and was appropriate for both machanical and anti-cohesion properties. In accessment of field application test 7050Al alloy made parts of small arms showed equivalent or better performance than 7075 Al alloy.

  • PDF

Formation Behavior of Anodic Oxide Films on Al7075 Alloy in Sulfuric Acid Solution (황산용액에서 Al7075 합금 표면의 양극산화피막 형성거동)

  • Moon, Sungmo;Yang, Cheolnam;Na, Sangjo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The present work is concerned with the formation behavior of anodic oxide films on Al7075 alloy under a galvanostatic condition in 20 vol.% sulfuric acid solution. The formation behaviour of anodic oxide films was studied by the analyses of voltage-time curves and observations of colors, morphologies and thicknesses of anodic films with anodization time. Hardness of the anodic oxide films was also measured with anodization time and at different positions in the anodic films. Six different stages were observed with anodiziation time : barrier layer formation (stage I), pore formation (stage II), growth of porous films (stage III), abnormal rapid oxide growth (stage IV), growth of non-uniform oxide films (stage V) and breakdown of the thick oxide films under high anodic voltages (stage VI). Hardness of the anodic oxide films appeared to decrease with increasing anodization time and with the position towards the outer surface. This work provides useful information about the thickness, uniformity, imperfections and hardness distribution of the anodic oxide films formed on Al7075 alloy in sulfuric acid solution.

A Study on the Fracture Characteristics of 7075 Aluminum Alloy (7075 Al 합금의 파괴특성에 관한 연구)

  • Joung, Tai-Seoung;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.12 no.1
    • /
    • pp.32-39
    • /
    • 1992
  • In this study, electron microscopy, Fractography and $J_{IC}$ test have been used to investigate the fracture behaviour in the scope of aging temperature which 7075 Al-alloy can have high strength. Conclusions obtained on this study are as followed. 1) When the 7075 Al-alloy was aged for 24hrs at $120^{\circ}C$, it's mechanical properties was excellent but fracture toughness decrement resulted from intergranular fracture was emerged. 2) The state of aged for 24hrs at $100^{\circ}C$, had the highest fracture toughess. 3) We could infer that intergranular fracture occurred because preferrential precpitated precipitates in the grain boundary growed in the form of colinear along the grain boundary.

  • PDF

A Study on Corrosion Fatigue Crack Growth Behavior in Al-Alloy 7075-T651 (I) (Al-Alloy 7075-T651의 부식피로균열 성장거동에 관한 연구(I))

  • 김봉철;한지원;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 1998
  • Fatigue crack growth rates(i.e. crack initiation and crack growth of short and long crack) are investigated using commercial plates of high strength Al alloy 7075-T651 for the transverse-longitudinal(T-L) direction in air, water and sea water. Also, the evaluation direct current potential drop(D.C.P.D) method and the fractographical analysis by SEM are carried out. Near threshold region, short crack growth rates were much faster than those of comparable long cracks, and these short crack growth rates actually decrease with increasing crack growth and eventually merge with long crack data. Fatigue crack propagation rates in aggressive media(i.e. sea water) increase noticeably over three times those in air. One of the most significant characters in this phenomenon as a corrosion-fatigue causes an acceleration in crack growth rates. Sea water environment, particularly Cl$^{[-10]}$ solution brings the most detrimental effects to aluminum alloy. The result of fractographical morphology in air, water and sea water by SEM shows obvious dimpled rupture and typical striation in air, but transgranular fracture surface in water and sea water.

  • PDF