• Title/Summary/Keyword: Al 6061

Search Result 345, Processing Time 0.028 seconds

Characteristics of Bending Strength on Coating Condition of Metal Surface Polyurethan Coating Material (금속표면에 폴리우레탄코팅한 소재의 코팅조건 변화에 따른 굽힘강도 특성)

  • 이강길
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.124-129
    • /
    • 2001
  • The research on anticorrosive of valve for ship, waterworks, and drainage system is very important. The purpose of this paper is to develop the metal/polyurethan adhesive technique at insider of the value to prevent corrosion in the value. It is performed to the bending strength test by using metal /polyurethan in the metals (SB41, Al6061). It is investigated to the effects of bending strength on curing temperature, preheating time and curing time, and to the fracture mechanism of metal/polyurethan adhensived specimen. As a results, we find that the bending strength is the highest at curing temperature of 11$0^{\circ}C$ and the curing time is 60 minutes in metal/polyurethan adhesive specimen.

  • PDF

Fatigue Crack Growth Behavior of Short fiber/Particle Hybrid Metal Matrix Composites (단섬유/입자 혼합 금속복합재료의 피로균열진전 거동)

  • Oh K.H.;Jang J. H.;Han K. S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.219-222
    • /
    • 2004
  • The effects of short fiber and particle hybrid reinforcement on fatigue crack propagation behaviors in aluminum matrix composites have been investigated. Single and hybrid reinforced 6061 aluminum containing same 20 $Al_2O_3\;volume\%$ with four different constituent ratios of short fibers and particles were prepared by squeeze casting method and tested to check the near-threshold and stable crack growth behavior. The fatigue threshold of the composites increased with portion of particle contents and showed the improved crack resistance especially in low stress intensity range. Addition of particle instead of short fiber also increased fracture toughness due to increase of inter-reinforcement distance. These increase in both fatigue threshold and fracture toughness eventually affected the fatigue crack growth behavior such that the crack growth curve shift low to high stress intensity factor value. Overall experimental results were shown that particle reinforcement was enhanced the fatigue crack resistance over the whole stress intensity factor range.

  • PDF

알루미늄 반사경을 사용한 천체망원경의 성능 테스트

  • Kim, Sang-Hyeok;Park, Su-Jong;Kim, Geon-Hui;Yang, Sun-Cheol;Heo, Myeong-Sang;Lee, Sang-Yong;Lee, Gil-Jae;Jeong, Byeong-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.215.1-215.1
    • /
    • 2012
  • 일반적인 천체 망원경의 반사경은 유리재질의 소재를 원하는 형상의 반사면으로 가공한 후 그 위에 알루미늄 코팅을 하여 사용한다. 하지만 본 연구에 사용된 망원경은 주경과 부경을 모두 알루미늄(Al-6061 T6)을 직접 가공하여 제작하였다. 알루미늄을 직접 가공하여 반사경을 만들 경우의 장점은 냉각이 필요한 기기에서 광구조물과 반사경의 열팽창 계수 차이를 신경 쓸 필요가 없으며 DTM(Diamond Turning Machine)을 이용할 수 있다는 것이다. 본 망원경은 망원경의 성능을 향상시키기 위하여 3매의 보정 렌즈를 사용한 반사굴절 망원경이며 구경은 200mm, 초점거리는 750mm, F수는 3.75이다. 주경과 부경은 각각 200 mm와 90 mm의 쌍곡면으로 설계 및 제작되었다. 본 연구에서는 DTM을 이용해 알루미늄 재질의 주경과 부경을 제작하고 이 반사경들의 측정 결과를 토대로 측정 결과와의 오차가 가장 작은 새로운 반사경 설계식을 유도하였다. 이 설계식을 이용하여 광학 설계 프로그램에서 망원경의 성능을 예측하였으며 실제 제작된 망원경을 이용하여 얻은 이미지와 비교한다.

  • PDF

Analysis of IR lens mounting with elastomer (밀봉재를 이용한 적외선 렌즈 마운팅 분석)

  • 김연수;김현숙;최세철;김창우
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.460-462
    • /
    • 2001
  • We have analyzed the characteristics of IR lens mounting with elastomer and applied the results to the mounting of a silicon lens with diameter 117 mm which is the objective of a thermal imaging system. The elastomer, the 577 primerless silicone adhesive (Dow Corning Co.) which is heat cure type, and the mount material, A16061 are used for our analysis. Theoretical analysis gives the result that the space between lens and mount is required to be more than 250 ${\mu}{\textrm}{m}$ under the operational temperature conditions of -40~+6$0^{\circ}C$.

  • PDF

Prediction of Surface Roughness in Hole Machining Using an Endmill (엔드밀을 활용한 홀 가공 시 표면거칠기 예측에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.42-47
    • /
    • 2019
  • Helical machining is an efficient method for machining holes using an endmill. In this study, a surface roughness prediction model was constructed for improving the productivity of hole machining. Experiments were conducted to form holes by the helical machining of AL6061-T4 aluminum sheets and correlation analysis was performed to examine the relationships between the variables based on the measured results. Meanwhile, a regression analysis technique was used to construct and evaluate the prediction model. Through these analyses, the parameter which has the greatest influence on the surface roughness when the hole is formed by the helical machining is the feed, followed by the number of revolutions of the endmill. Moreover, for the axial feed of the endmill, it was concluded that the influence of the surface roughness is small compared to the other two parameters but it is a factor worth considering to improve the accuracy when constructing the predictive model.

Analysis of Machined Surface Morphology According to Changes of Surface Condition in Micro Particle Blasting (미세입자 분사가공 시 표면 조건 변화에 따른 가공 표면 형상 분석)

  • Choi, Sung-Yun;Hwang, Cheol-Ung;Kwon, Dae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-75
    • /
    • 2018
  • This study analyzes the change of Al 6061-T6 specimen surface shape when undergoing microparticle spraying and analyzes the influence of factors on the experiment. Fine particle spraying is applied to the specimen and the surface shape of the processed surface is measured through a surface shape measuring device. The measured data was analyzed by the ANOVA method to investigate the effect of factors such as particle, nozzle diameter, pressure, injection height, and injection time on the injection depth and injection diameter.

Characteristics of Ni-coated diamond/Metal Composite Coatings by Cold Spray Deposition (니켈 코팅된 다이아몬드/금속 복합재의 저온분사 코팅특성)

  • Jung, Dong-Jin;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.550-557
    • /
    • 2009
  • In this study, bronze or SUS304 powders blended with 10 wt.% diamond particles were used to prepare metal/diamond composite materials deposited by cold spraying. The effects of matrix metal, diamond partical size, and the thickness of the Ni coating on the diamond were studied on Al 6061 substrate. The results showed that the hardness of the metal/diamond composite coating layers was higher than that of the same composite materials when using the sintering method. The fraction of diamond content in the coated layer increased when the metal matrix was soft. When the size of the diamond particles was reduced, the fraction of the diamond particles increased. In addition, in the case of diamond with a thicker Ni-coated layer, the fracturing of diamonds was mitigated in the composite coating layers.

A Study on the Fabrication and Evaluation of Burnishing Drills for Aluminum Hole Making (알루미늄 홀 가공용 버니싱 드릴의 제작 및 평가에 관한 연구)

  • Ha, Jeong-Ho;Kim, Dong-Gyu;Sa, Min-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.53-63
    • /
    • 2022
  • Recently, the use of aluminum components in the reduction of the vehicle weight to improve fuel efficiency and reduce carbon dioxide emissions has increased. In the aluminum machining cutting process, hole-making is an important process that accounts for 30% of the machining process. Although many studies have been conducted using the continuously advancing hole processing technology, studies on the machinability of the tool depending on the type of chuck on the workpiece are still lacking. In this study, the machining performance of cemented carbide burnishing drills was compared and analyzed according to chuck type. The burnishing drill was used to create a hole in the AL6061 workpiece, and the surface roughness and dimensional accuracy of the hole were examined according to the type of chuck while monitoring the spindle load.

A Study on the Micro Turning Machinability of A1-Mg Alloy Using Polycrystalline Diamond Tool (다결정 다이아몬드 공구를 이용한 Al-Mg계 합금의 미소선삭가공특성에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.122-130
    • /
    • 1996
  • In this study, machinability of some aluminum-magnesium alloy are experimentally investigated using polycrystalline diamond tool with turning, and evaluated some independent cutting variables affected micrometal cutting characteristics as cutting force, specific cutting resistance, shear angles. To know the effect of cutting parameters of single point diamond machining, experiments were performed to measure cutting forces for high speed turning of aluminum alloy 6061-T6, SM45C and FC20 with poly- crystalline diamond and coated cemented carbide tool. Independent cutting variables were changed to a variety of cutting speed, feed rate, rake angles, material properties of workpiece and tool. Futhermore. Some useful informations are obtained in this study can guide micro metal cutting of aluminum alloy with diamond tool.

  • PDF

CNN Analysis for Defect Classification (결함 분류를 위한 CNN 분석)

  • Oh, Joon-taek;Kang, Hyeon-Woo;Kim, Soo-Bin;Jang, Byoung-Lok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.65-66
    • /
    • 2021
  • 본 논문에서는 Smart Factory의 자동 공정에서 결함의 분류를 실시간으로 시도하여 자동 공정 제어를 위한 결함 분류 딥러닝 기법을 제안하고, Pooling 종류에 따른 분류 성능을 비교한다. Smart Factory 구축에 있어서 CNN을 이용한 공정 제어를 통해 제품 생산에 있어서 생산량의 증가와 불량률의 감소를 이루어내는 것이 가능하다. Smart Factory는 자동화 공정이므로 결함의 분류 속도가 중요하지만, 생산량의 증가와 불량률의 감소를 위해서는 정확하게 결함의 종류를 분류하여 Smart Factory의 공정을 제어하는 것이 더욱 중요하다. 본 논문에서는 Pooling을 Max Pooling과 Averrage Pooling을 복합적으로 설정하였을 때 높은 성능을 보였다.

  • PDF