• Title/Summary/Keyword: Al 5083-O alloy

Search Result 31, Processing Time 0.041 seconds

High Current Arc Welding Technology of Aluminum Alloy (알루미늄 합금의 대전류 아크용접 기술)

  • Choi, Young-Bae;Kang, Mun-Jin;Kim, Dong-Cheol;Hwang, In-Sung
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • Aluminum alloy, Al5083-O, is one of candidate materials for the LNG storage tank, because of its excellent weldability, cryogenic characteristics, and corrosion resistance. The good weldability of Al5083-O is very important in LNG storage tank manufacturing. In this study, high current metal inert gas(MIG) welding process was used to get one pass welding of thick plate aluminum alloy. Bead on plate(BOP) welding was performed to evaluate the effect of welding conditions on the height of bead and depth of penetration. The optimum welding conditions were derived to get one pass welding of the thickness of 14.5mm. The mechanical properties of the welded joint were evaluated. The cross-sectional macro test, tensile test, and bending test satisfied the class rule.

A Study on the GMA Welding Characteristics of Al5083-O Aluminum Alloy According to the Shield Gas Mixing Ratio and Heat Input (Al5083-O 알루미늄합금의 보호가스 혼합비율 및 입열량에 따른 GMA용접 특성에 관한 연구)

  • 정재강;양훈승;이동길
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.65-70
    • /
    • 2002
  • This study was to evaluate GMA welding characteristics of the A15083-O aluminum alloy according to the shield gas mixing ratio and heat input change. The GMA welding of the base metal was carried out with flour different shield gas mixing ratios(Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%). Regarding the if1uence on the bead shape of the shield gas mixing ratio and heat input, the bead width was greatest in Ar100%+He0% mixture. But the penetration depth and area were greatest in Ar33%+He67% mixture considering that the lower Ax gas ratio, the higher bead depth and area. Also, dilution was also best in the shield gas mixing ratio. The size and number of deflects were least in Ar33%+He67% mixture. Higher He gas ratio resulted in less deflects detected by the radiographic inspection.

Effects of Water Cavitation Peening on Cavitation Characteristics of 5000 Series Al Alloys (5000계열 Al 합금의 캐비테이션 특성에 관한 워터 캐비테이션 피닝의 영향)

  • Kim, Seong-Jong;Hyun, Koang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.481-487
    • /
    • 2012
  • Recently, the construction of the small Al alloy ships is an increasing trend in viewpoint such as the disposal issue of a retired ship, the enhancement of environmental regulation and resources recycling etc. for FRP ships. However, Al alloy ship which can achieve high speed by light weight in marine environment is exposed to a problem on materials damage by cavitation-erosion which is generated by large impact pressure with the collapse of air bubbles due to cavitation. Consequently, in this study, water cavitation peening technology was applied in Al alloy for ship to enhance durability life by preventing cavitation damage. So, the water cavitaton peening application time that presented the excellent cavitation characteristic investigated. The weight-loss of 5456-H116, 5083-H321 and 5052-O Al alloy at the optimum water cavitation peening time were improved to 42.11 %, 50.0 % and 25.7 %, respectively.

Evaluation of Mechanical Characteristic of Al Alloy for Ship's Welded with Various Welding Techniques (다양한 용접기술을 적용한 선박용 알루미늄합금의 기계적 특성 평가)

  • Kim, Seong-Jong;Jang, Seok-Ki;Han, Min-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.223-228
    • /
    • 2007
  • This paper investigated on mechanical characteristic of Al alloy for ship's welded with various welding techniques such as TIG, MIG welding and welding by robot. The yield strength, tensile strength and elongation in TIG welding present 83.9%, 64.6% and 21.9% compare to those in base metal, respectively. The MIG welding is carried out with welding eletrode of ER5183 and ER5356. The mechanical characteristics in ER5356 are improved at approximately 2-4% for ER5183. The mechanical properties of 5083O in welding by robot are better than those of 5456-H116.

  • PDF

Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O (Al 5083-O재에 있어서 $K_{III}$ 모드 4점 전단 하에서의 피로파단면 무늬와 피로균열진전거동의 관계)

  • Kim, Gun-Ho;Won, Young-Jun;Sakakura, Keigo;Fujimoto, Takehiro;Nishioka, Toshihisa
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.43-44
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by model. For this reason a study on model has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper four point shear-fatigue test with Aluminum alloy Al 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

  • PDF

Effect of welding condition on microstructures of weld metal and mechanical properties in Plasma-MIG hybrid welding for Al 5083 alloy (알루미늄 5083 합금의 플라즈마 미그 하이브리드 용접시 용접부 미세조직과 기계적 성질 변화에 미치는 용접조건의 영향)

  • Park, Sang-Hyeon;Lee, Hee-Keun;Kim, Jin-Young;Chung, Ha-Taek;Park, Young-Whan;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.61-71
    • /
    • 2015
  • The effect of welding condition on microstructure and mechanical property of Plasma-MIG Hybrid Weld between Al 5083 plates(thickness : 10mm) was investigated. 1 pass weld without any defects such as puckering, undercut, and lack of fusion was obtained by 150~200A of plasma current and 5~7mm of welding speed. Gas porosities and shrinkage porosities were existed in the weld near fusion line. As welding speed and plasma current were decreasing, the area fraction of porosity was increasing. The hardness of the weld is increasing as welding speed. On the basis of microstructural analysis, Mg segregated region near dendrite boundaries tends to increase with the welding speed. In the result of hardness test, Distribution of hardness in fusion zone showed little change with the plasma current. However, when the welding speed increased, hardness in weld metal markdly increased. It could be considered that effect of heat input to growth of the dendritic solidification structures. Based on tensile test, tensile properties of weld metal was predominated by area fraction of porosities. Consequently, tensile properties can be controlled by formation site and area fraction of porosity.

Mechanical Characteristics and Macro-and Micro-structures on Friction Stir Welded Joints with 5083O Al Alloys (Al 5083O합금의 마찰교반용접부의 조직과 특성평가)

  • Jang, Seok-Ki;Park, Jong-Seek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.104-111
    • /
    • 2009
  • This paper shows the behaviors of macro- and micro-structures and mechanical properties for specimen's welding region welded by FSW. according to welding conditions with 5mm thickness aluminum 5083O alloy plate. It apparently results in defect-free weld zone in case traverse speed was changed to 32 mm/min under conditions of anti-clockwise direction and tool rotation speed such as 800 and 1250 rpm with tool's pin diameter of 5 ${\Phi}mm$ and shoulder diameter of 20 ${\Phi}mm$, pin length of 4.5 mm and tilting angle of $2^{\circ}$. The ultimate stress of ${\sigma}_T=331$ MPa and the yield point of 147 MPa are obtained at the condition of the travel speed of 32 mm/min with the tool rotation speed of 1250 rpm. There is neither voids nor cracks on bended surface of $180^{\circ}$ after bending test. The improvement of toughness after impact test was found. The lower rotating and traverse speed became, the higher were yield point, maximum stress and elongation(%) with the stresses and the elongation(%) versus the traverse speed diagram. Vickers hardness for cross section of welding zone were also presented. The typical macro-structures such as dynamically recrystallized zone, thermo-mechanically affected zone and heat affected zone and the micro-structures of the transverse cross-section were also showed. However, the author found out that the region of 6mm far away from shoulder circumference was affected by friction heat comprehensively, that is, hardness softened and that part of micro-structures were re-solid-solution or recrystallized, the author also knew that there is no mechanically deformation on heat affected zone but there are the flow of plastic deformation of $45^{\circ}$ direction on thermo-mechanically affected zone and the segregation of Al-Mg on nugget. The solid solution wt(%) of parent material as compared against of friction stir welded zone was comprehensively changed.

The Strength Evaluation of Al5083-O GMA Welding Zone According to the Heat Input and Mixing Shield Gas Ratio (Al5083-O GMA 용접부의 입열량과 보호가스 혼합비율에 따른 강도 평가)

  • 이동길;양훈승;정재강
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.158-165
    • /
    • 2002
  • This study was to evaluate mechanical properties and toughness of the Al5083-O aluminum alloy welding zone according to the mixing shield gas ratio and heat input change. The GMA(Gas Metal Arc) welding of the base metal was carried out with four different mixing shield gas ratios(Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%) and three different heat inputs(low, medium, and high). To investigate the Charpy absorbed energy of the weld zone, the specimens were divided base metal, weld metal, fusion line, and HAZ notched specimen according to the worked notch position. The different gas ratio and heat input had little effect upon the tensile strength. But Ar33%+He67% mixture had the greatest mechanical properties considering that the more He gas ratio concentrations, the higher yield strength and elongation. The maximum load and displacement of the weld metal notche specimen was so much low more than that of the base metal, but fusion line and HAZ notched specimens showed almost same regardless of the mixing shield gas ratio and heat input. The Charpy absorbed energy was lowest in weld metal notched specimen, and increased in the fusion line, and HAZ notche specimen in order. Ar33%+He67% mixture had the greatest toughness considering that the more He gas ratio, the higher absorption energy.

The Influence of Shield Gas Ratio on the Toughness of Al5083-O GMA Welding Zone (Al5083-O GMA 용접시 불활성가스 혼합비가 용접부의 인성에 미치는 영향에 관한 연구)

  • 이동길;조상곤;김건호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.653-660
    • /
    • 2002
  • In this study, the toughness was evaluated by using the instrumented Charpy impact testing procedures for A15083-O aluminum alloy used in the LNG carrying and storing tank. The specimens were GMAW welded with four different mixing shield gas ratios (Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%), and tested at four different temperatures(+25, -30, -85, and $-196^{\circ}C$) in order to investigate the influence of the mixing shield gas ratio and the low temperature. The specimens were divided into base metal, weld metal, fusion line, and HAZ specimen according to the worked notch position. From experiment, the maximum load increased a little up to -$85^{\circ}C$ , and the maximum load and maximum displacement were shown the highest and the lowest at -$196^{\circ}C$ than the other test temperatures. The absorption energy of weld metal notched specimens was not nearly depends on test temperature and mixing shield gas ratio because the casting structure was formed in weld metal zone. In the other hand, the other specimens were shown that the lower temperature, the higher absorption energy slightly up to $-85^{\circ}C$ but the energy was decreased so mush at $-196^{\circ}C$.

Fatigue Strength Assessment of High Manganese Steel for LNG CCS (LNG CCS적용을 위한 고망간강의 극저온 피로성능 평가)

  • Lee, Jin-Sung;Kim, Kyung-Su;Kim, Yooil;Yu, Chang-Hyuk;Park, Jooil;Kang, Bong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.246-253
    • /
    • 2014
  • Liquid natural gas is stored and transported inside cargo tank which is made of specially designed cryogenic materials such as 9% Ni steel, Al5083-O alloy and SUS304 and so on. The materials have to keep excellent ductile characteristics under the cryogenic environment, down to -163oC, in order to avoid the catastrophic sudden brittle fracture during the operation condition. High manganese steel is considered to be the promising alternative material that can replace the commonly used materials mentioned above owing to its cost effectiveness. In line with this industrial need, the mechanical properties of the high manganese steel under both room and cryogenic environment were investigated in this study focused on its tensile and fatigue behavior. In terms of the tensile strength, the ultimate tensile strength of the base material of the high manganese steel was comparable to the existing cryogenic materials, but it turned out to be undermatched one when welding is involved in. The fatigue strength of the high manganese steel under room temperature was as good as other cryogenic materials, but under cryogenic environment, slightly less than others though better than Al 5083-O alloy.