• Title/Summary/Keyword: Al

Search Result 26,588, Processing Time 0.042 seconds

Corrosion Characteristics of $Al_3Ti-Cr$ Intermetallics (금속간 화합물 $Al_3Ti-Cr$의 부식특성)

  • Yu, Yong-Jae;Kim, Seong-Hun;Choe, Yun-Je;Kim, Jeong-Gu;Lee, Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.398-402
    • /
    • 2000
  • Three kinds of $Al_3Ti-Cr$ alloys, namely, $Al_{67}Ti_{25}Cr_8,\;Al_{66}Ti_{24}Cr_{10}\;and\;Al_{59}Ti_{26}Cr_{15}$, were prepared by induction melting followed by the thermomechanical treatment. The corrosion behavior in 3.5% NaCl solution and the high-temperature oxidation behavior at 1000, 1100 and $1200^{\circ}C$ for the prepared alloys were investigated. Electrochemical results indicated increased resistance to localized corrosion with increasing Cr content. Cr additions were found to prevent passive film from undergoing brittle fracture. XPS results revealed the passive films of $Al_3Ti-Cr$ alloys were composed mainly of $Al_2O_3$ that coexisted with $TiO_2$ and $Cr_2O_3$. The overall oxidation resistance of the prepared alloys were excellent. Specifically, the oxidation resistance increased in the order of $Al_{59}Ti_{26}Cr_{15},\;Al_{66}Ti_{24}Cr_{10}\;and\;Al_{67}Ti_{25}Cr_8$. As the Al content in the base alloys increased, the $Al_2O_3$ formation was facilitated leading to the increased oxidation resistance.

  • PDF

Effects of Al and Mn on the Growth, Nutrient Status and Gas Exchange Rates of Pinus densiflora Seedlings (소나무 묘목(苗木)의 생장(生長), 영양상태(營養狀態) 및 가스교환속도(交換速度)에 미치는 Al과 Mn의 영향(影響))

  • Lee, Choong Hwa;Jin, Hyun-O;Kim, Young-Kul
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.74-82
    • /
    • 2001
  • The effects of Al and Mn concentration on dry weight growth, nutrient status and gas exchange rates of 2-Year-old Japanese red pine(Pinus densiflora) seedlings grown in a nutrient culture solution were investigated. Al was added as aluminum chloride at 0, 10, 30 or 60ppm, and Mn was added as manganese chloride at 0, 30 or 60ppm to the nutrient culture solution. The pH of the solution was maintained at 4.0 by adding HCl or NaOH solution. The seedlings were transplanted into the nutrient culture solution, then they were grown in a greenhouse for 90 days. The interactive effects of Al and Mn on the dry weight growth of the seedlings were not significant. There were a main effect of Al or Mn on the dry weight growth and element concentrations of the seedlings. The treatment with Al of ${\geq}10ppm$ or that with Mn of 60ppm induced a significant reduction in the dry weight growth, which indicates that the effect of Al is stronger than that of Mn. The chlorophyll content of needles was not affected by Al treatment, but was significantly reduced by treatment with Mn of 60ppm. Furthermore, the treatment with Al of 60ppm or that with Mn of ${\geq}30ppm$ caused a significant reduction in the dark respiration rate of the roots. The net photosynthetic rate of the seedlings reduced with increasing the concentration of Al or Mn in the nutrient culture solution, which suggests that Al or Mn induced reductions in the relative growth rate(RGR) and net assimilation rate(NAR) of the seedlings were mainly due to the decrease of net photosynthesis.

  • PDF

Influence of Charging Condition of Al-dross on Maximum Concentration of Al in Molten Steel : Fundamental study for improvement of chemical energy in EAF process (용강 중 Al 최대 농도에 대한 Al 드로스 장입 조건의 영향: 전기로 공정 내 화학 에너지 향상을 위한 기반 연구)

  • Kim, Gyu-Wan;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.44-50
    • /
    • 2019
  • In the electric arc furnace process, the chemical energy such as the heat of oxidation reaction and the heat of carbon combustion etc. is consumed as 30% of the total input energy. In order to reduce $CO_2$ emission in EAF, it is necessary to decrease the use of electric power energy during scrap melting stage and increase the use of chemical energy. In general, when the carbon materials is individually charged into the molten steel, the carbon materials floated to the slag layer due to low density before it is dissolved in molten steel. When the concentration of carbon in the molten steel is high, the combustion energy of carbon by oxygen injection can lower the electric power energy and improve the chemical energy consumption. Therefore, an efficient charging methods of carbon material is required to increase the efficiency of carbon combustion heat. On the other hand, Al-dross, which is known as a by-product after Al smelting, includes over 25 mass% of metallic Al, and the oxidation heats of Al is lager than that of carbon. However, the recycling ratio fo Al-dross was very low and is almost landfilled. In order to effectively utilize the heats of oxidation of Al in Al-dross, it is necessary to study the application of Al-dross in the steel process. In this study, the dissolution efficiency of carbon and aluminum in molten steel was investigated by varying the reaction temperature and the mixing ratios of coke and Al-dross.

Sintering Properties of Renewed ${Al_2}{O_3}$Ceramics with Particle Size and Addition Amount of Recycling Powder (재활용원료의 첨가량과 입경에 따른 재생 ${Al_2}{O_3}$ 세라믹스의 소결 특성)

  • 신대용;한상목;김경남
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1123-1131
    • /
    • 2001
  • The sintering behaviors of the renewed $Al_2$O$_3$ceramics were investigated as functions of the addition amount and particle size of recycling $Al_2$O$_3$powder, such as crushed powder of structural $Al_2$O$_3$ceramics and waste $Al_2$O$_3$adsorbent, were investigated. Pure $Al_2$O$_3$sample was fabricated by sintered at 1,$650^{\circ}C$ for 5h and it was crushed into powder (-40${\mu}{\textrm}{m}$and +40${\mu}{\textrm}{m}$ in particle size) by thermal shock treatment and crushing. Then, 10~50wt% of crushed $Al_2$O$_3$powder and waste $Al_2$O$_3$adsorbent were mixed with pure $Al_2$O$_3$powder and were subjected to re-sintering to renewed $Al_2$O$_3$sample. The density and the 3-point bending strength increased with increasing the sintering temperature without regard to the addition amount and particle size of recycling $Al_2$O$_3$powder, and that of the samples at the same sintering temperature decreased with increasing the addition amount and particle size of recycling $Al_2$O$_3$powder. Samples over 200 Mpa of 3-point bending strength were obtained by mixing ~30wt% of crushed $Al_2$O$_3$powder(-40${\mu}{\textrm}{m}$), ~20wt% of crushed $Al_2$O$_3$powder (+40${\mu}{\textrm}{m}$) and 10wt% of waste $Al_2$O$_3$adsorbent. 5~20wt% of waste glass powder containing renewed $Al_2$O$_3$samples for densification were fabricated by sintered at 1200~1$650^{\circ}C$ for 5h. The temperature of maximum density and 3-point bending strength decreased with increasing the addition amount of waste glass powder, however, these samples at above 140$0^{\circ}C$ showed lower density and bending strength than renewed $Al_2$O$_3$samples. The addition of waste glass powder did not improved the densification of renewed $Al_2$O$_3$sample.

  • PDF

Manufacture of SiC-TiC System Composite by the Reaction-Bonded Sintering (반응결합 소결에 의한 SiC-TiC계 복합재료 제조)

  • 한인섭;김홍수;우상국;양준환;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.849-860
    • /
    • 1994
  • The microstructural evolution and crystalline phases of this infiltration of Ti+Al liquids in TiC, SiC, TiC+C, and SiC+C preforms have been investigated. As the Ti and Al mixing ratio in Ti+Al infiltrated liquid changes, the newly formed reaction products, which were reacted from the Ti+Al liquid with preforms, consisted of three major phases as Ti3AlC, Al2Ti4C2 or Al4C3. The TiC grain shape was changed to spheroid, when Ti3AlC was formed. In case of Al2Ti4C2 formation, the platelet grain was formed from the original TiC grain. When Al4C3 was formed, nodular or intergranular fine-grained Al4C3 was formed around the TiC grain, while the original TiC grain shape was not changed.

  • PDF

ENHANCED REMOVAL OF RESIDUAL ALUMINUM AND TURBIDITY IN TREATED WATER USING POLYMERS

  • Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.155-164
    • /
    • 2005
  • This study investigated the possibility of reducing the residual aluminum (Al) in the treated water using polymers. Two raw waters (lake and river water) and three kinds of polymers (coagulant, flocculant, and filtration aids) were used for this purpose. This study found that coagulation at the high dose did not necessarily lead to the high concentration of the residual Al in the treated water. The coagulation efficacy was found more important in determining the residual Al than the coagulant dose. The use of a polymer enhanced the removal of turbidity as well as the residual Al. The coagulant aid removed the dissolved Al as well as the particulate Al by helping the coagulation and the solid-liquid separation. The flocculant aid and the filtration aid preferentially removed the particulate Al while helping the solid-liquid separation. The filtration aid reduced the residual Al substantially more effectively than the flocculant aid. The polyamine-based coagulant aid (FL) showed the better performance in reducing the residual Al and turbidity than DADMAC (WT). The cationic flocculant aid with weak charge density and the medium molecular weight (SC-020) showed the best performance in reducing the residual Al.

Age Hardening and Mechanical Property of Extruded Al-Zn-Mg-(Cu) Al Alloys with Sc addition (Sc 첨가된 Al-Zn-Mg-(Cu)계 알루미늄 합금 압출재의 시효 경화 거동과 기계적 성질)

  • Shim, Sung Yong;Lim, Su Gun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.243-249
    • /
    • 2007
  • The age hardening behavior and mechanical properties of an extruded Al-Zn-Mg-(Cu)-0.1 wt.%Sc alloy were investigated with the Sc addition and ageing temperature. The results showed that the $Al_3Sc$ compounds were formed by Sc addition and distributed preferentially along the extrusion direction. The age hardening of Al-Zn-Mg-Cu-0.1 wt.%Sc alloy which was treated by T6 process was more significant than that of Al-Zn-Mg-0.1 wt.%Sc alloy. The tensile property of Al-Zn-Mg-Cu+0.1 wt.%Sc alloy was also higher than that of Al-Zn-Mg-0.1 wt.%Sc alloy, which is 691 MPa and 584 MPa in strength and 9% and 11% in elongation, respectively.

Microstructural and Mechanical Characterization of Nanocomposite Ti-Al-Si-N Films Prepared by a Hybrid Deposition System (하이브리드 증착 시스템에 의해 합성된 나노복합체 Ti-Al-Si-N 박막의 미세구조와 기계적 특성)

  • 박인욱;최성룡;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • Quaternary Ti-Al-Si-N films were deposited on WC-Co substrates by a hybrid deposition system of arc ion plating (AIP) method for Ti-Al source and DC magnetron sputtering technique for Si incorporation. The synthesized Ti-Al-Si-N films were revealed to be composites of solid-solution (Ti, Al, Si)N crystallites and amorphous Si3N4 by instrumental analyses. The Si addition in Ti-Al-N films affected the refinement and uniform distribution of crystallites by percolation phenomenon of amorphous silicon nitride, similarly to Si effect in TiN film. As the Si content increased up to about 9 at.%, the hardness of Ti-Al-N film steeply increased from 30 GPa to about 50 GPa. The highest microhardness value (~50 GPa) was obtained from the Ti-Al-Si-N film haying the Si content of 9 at.%, the microstructure of which was characterized by a nanocomposite of nc-(Ti,Al,Si) N/a$-Si_3$$N_4$.

Growth of AlN crystals by the sublimation process (승화법에 의한 AlN 결정의 성장)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.2
    • /
    • pp.68-71
    • /
    • 2008
  • AlN crystals were grown by the sublimation process. As grown AlN crystals were the polycrystalline boule in the form of the agglomerate of small AlN single crystalline AlN. As-grown AlN boule has a length about 2${\sim}$3 mm long and a diameter of 1 inch. The carbon impurities were observed on the surface and inside of the grown AlN crystals and the growth behavior was investigated by optical microscopy and SEM observation.

Fabrication and Mechanical Properties of $SiC_p/Al$ Composites by Pressureless Infiltration Technique (무가압침투법에 의한 $SiC_p/Al$ 복합재료의 제조 및 기계적 특성)

  • Jin, H.G.;Oh, M.S.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.74-81
    • /
    • 2001
  • The infiltration behavior of molten Al-alloy, microstructures, hardness, and the interfacial reactions of $SiC_p/Al$ composites fabricated by the pressureless infiltration technique were investigated. It was made clear that both the weight fraction of SiC reinforcement and additive Mg content considerably influenced on the infiltration behavior of the molten Al-alloy matrix. Complete infiltration of molten Al-alloy achieved under the conditions that weight fraction of SiC content is more than 30wt%, and additive Mg content is more than 9wt%. Interfacial region of Al-alloy matrix and SiC reinforcement phase, $Mg_2Si$ was formed by the reaction between Mg and SiC. Another reaction product AlN was also formed by the reaction between Al-alloy matrix and gas atmosphere nitrogen.

  • PDF