• Title/Summary/Keyword: Al₂O₃mold

Search Result 47, Processing Time 0.022 seconds

Investigation of Interface Reaction between TiAl Alloys and Mold Materials

  • 김명균;김영직
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.289-289
    • /
    • 1999
  • This paper describes the investment casting of TiAl alloys. The effects of mold material and mold preheating temperature for the investment casting of TiAl on metal-mold interfacial reaction were investigated by means of optical micrography, hardness profiles and an electron probe microanalyzer. The mold materials examined were colloidal silica bonded ZrO₂, ZrSiO₄, A1₂O₃and CaO stabilized ZrO₂. When compared with conventional titanium a1loy, the high aluminum concentration of TiAl alloys helps to lower their reactivity in the molten state. The A1₂O₃mold is a promising mold material for the investment casting of TiAl in terms of the thermal stability, formability and cost. Special attention need to be paid to thermal stability and mold preheating when developing the investment calling of TiAl alloys.

CaO Crucible Induction Melting and Investment Casting of TiAl Alloys (TiAl 합금의 CaO 도가니 유도용융 및 정밀주조)

  • Kim, Myoung-Gyun;Sung, Si-Young;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.75-81
    • /
    • 2002
  • The main objectives were to investigate the suitability of CaO crucible for melting TiAl alloys and to develop investment mold for investment casting of TiAl alloys. TiAl alloy specimen were prepared by plasma arc furnace under argon atmosphere. After melting of TiAl alloy using CaO crucible, the results showed that there is little contamination of oxygen in the TiAl bulk. Conventional vacuum induction furnaces can be readily adaptable to produce cast parts of TiAl without high skilled techniques. The determination of optical metallography and microhardness profiles in investment cast TiAl alloy rods has allowed the gradation of the relative thermal stability of the oxides examined. The molds used for the present study were $ZrO_2$, $Al_2O_3$, CaO stabilized $ZrO_2$ and $ZrSiO_4$. Even although high temperature of mold preheating, $Al_2O_3$ mold is a promising mold material for investment casting of TiAl alloys in terms of thermal stability, cost and handling strength. It is important to take thermal stability and preheating temperature of mold into consideration for investment casting of TiAl alloys.

Effect of Mold Coatings on the Macrostructures of Cu-5%Sn Alloy (Cu-5% Sn합금(合金)의 주조조직(鑄造組織)에 미치는 도형재(塗型材)의 영향(影響)에 관(關)한 연구(硏究))

  • Choi, Young-Sung;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.5 no.3
    • /
    • pp.19-26
    • /
    • 1985
  • This study has been carried out to examine into wettability of Cu-5%Sn alloy in $Al_2O_3$, MgO, $SiO_2$ and graphite, respectively and investigated into the change in macrostructure of Cu-5%Sn alloy according to kind and mixing rate of mold-coating. The results obtained from the experiment are summerized as follows; 1. Cu Cu-5%Sn alloy, wettabilities of $Al_2O_3$ and MgO were good, on the other hand, wettabilities of $SiO_2$ and graphite were bad. 2. The fine equiaxed zone was created because of the role of $Al_2O_3$ and MgO as preferential nucleation sites. 3. Notwithstanding change of mixing rate of $SiO_2$ in mold coating the equixed zone was not created. 4. The area of equiaxed zone was varied according to mixing rate in the case of using $Al_2O_3$ and MgO in mold-coating.

  • PDF

α-case Interfacial Reaction Behavior of Al2O3 Mold Containing Interstitial and Substitutional Compounds for Titanium Investment Casting (침입형 및 치환형 화합물을 함유한 Ti 정밀주조용 Al2O3 주형의 α-case 계면반응 거동)

  • Choi, Bong-Jae;Lee, Seul;Kim, Young-Jig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.577-582
    • /
    • 2011
  • The newly developed ${\alpha}-case$ controlled mold material for Ti investment castings was suggested in this research. The $Al_2O_3$ mold containing interstitial $TiO_2$ and substitutional $Ti_3Al$ was manufactured by the reaction between $Al_2O_3$ and Ti. It is obvious that as the $TiO_2$ and $Ti_3Al$ content in the mold surface were increased, the depth of the interfacial reaction was significantly reduced. In addition, substitutional $Ti_5Si_3$ in the mold surface owing to the reaction between Ti and $SiO_2$ from the binder was effective for ${\alpha}-case$ reduction. Therefore, the ${\alpha}-case$ reduction was accomplished by the diffusion barrier effect of interstitial $TiO_2$, substitutional $Ti_3Al$ and $Ti_5Si_3$.

Effects of Process Parameter on Alpha-Case Formation of Ti and TiAl castings (Ti 및 TiAl 주조재의 ${\alpha}$-case 형성에 미치는 공정변수에 대한 영향)

  • Lee, Sang-Hwa;Kim, Myoung-Gyun;Sung, Si-Yuong;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.23 no.3
    • /
    • pp.137-146
    • /
    • 2003
  • The main purpose of this study is to investigate the effects of process parameter on alpha-case formation of Ti and TiAl castings. The previous studies showed that the molten titanium is excessively reactive to the refractory oxide mold, resulting in alpha-caes of the titanium castings regardless of composition of titanium alloys. However, the behavior of the alpha-case formation of TiAl alloy is not consistent with conventional titanium alloy. In order to investigate the alpha-case formation of Ti and TiAl castings with process parameter, especially the associated factors of investment mold such as mold material, binder and mold preheating temperature. An attempt has been made to characterize the alpha-case of titanium casting by using optical microscope, EDS, XRD, EMPA and hardness profiles. The formation of the alpha-case on the surface of pure titanium during investment casting was rather by that of solid solution with metallic element from mold material. The required mold strength was obtained with $CaZrO_3$ because of the possibility of using water soluble binder. However, the separation phenomenon between facing and back-up mold materials should be considered. The interfacial reaction of TiAl alloy showed different behavior from that of pure titanium and $Al_2O_3$ was best mold materials. The effect of binder as well as mold material on the formation of alpha-case was significant.

Fabrication of Porous Alumina Mold for the Casting Process of Fine Ceramics (Fine Ceramics의 Casting공정을 위한 다공질 알루미나 몰드의 제조)

  • 박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.89-96
    • /
    • 1999
  • Manufacturing conditions of the porous alumina mold were established to overcome various limits of the gypsum mold. For the preparations of the porous alumina mold, an activated charcoal was added to the Al2O3 with the wt% variation and then mixed. The binary slurry was study dispersed based on the examination of the ESA and rheological behaviro. The cylinder type alumina mold was cast in the gyspum mold and characterized by the shrinkage rate at the variable sintering temperature and the resistance against wear. It was proper to make a sintering of the Al2O3 by the surface diffusion which was non-shrinkage sintering mechansim, and intergranular neck growed stronger while sintering was being made. We studied a sintering by three categories; 1) thermodynamic method below 1,000$^{\circ}C$, 2) kinetic method above 1,000$^{\circ}C$ and 3) combined method. In the results of the respective works, combined method was superiro to the others. The prepared Al2O3 mold had relatively high strength, low drying rate, the resistance against the acid or base and good casting behavior.

  • PDF

Permanent Mold Casting of Ti-6.0wt%Al-4.0wt%V Alloy Melt (Ti-6.0wt%Al-4.0wt%V 합금 용탕의 금형 주조)

  • Kang, Jang-Won;Kim, Myung-Yong;Lee, Sang-Kil;Lee, Hae-Jung;Kim, Kyung-Hoon;Lee, Hyo-Soo;Lim, Sung-Chul;Kwon, Huck-Chon
    • Journal of Korea Foundry Society
    • /
    • v.27 no.3
    • /
    • pp.135-139
    • /
    • 2007
  • To produce higher quality of titanium casting at a lower cost, the new titanium casting technology by using a permanent metal mold was developed and applied to fabricate hip joint for biomedical application. The present study was carried out to investigate the reactivity and fluidity of the Ti-6.0 wt%Al-4.0 wt%V alloy with metal mold by applying various ceramic powders coating on the mold surface. The molten titanium for manufacturing hip joint was poured into steel mold. No reaction layer was formed on the surface of specimens fabricated steel mold coated with $Y_2O_3$ powder.

Surface Reaction Products of CP- Ti and Ti-25wt%Pd Castings Used for Dental Application (치과용 티타늄 및 Ti-25wt%Pd 주조체의 표면반응생성물)

  • 정준영;문수;이진형
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.383-389
    • /
    • 2004
  • A commercially pure Ti(CP-Ti) and Ti-25wt%Pd alloy for dental applications were cast into a phosphate-bonded Al$_2$ $O_3$/ $SiO_2$ investment mold and the surface of the casting specimens were investigated by means of SEM/EDS, XRD and XPS. The addition of 25wt%Pd in CP-Ti showed a moderate mold reaction owing to the considerable lowering of melting point. XRD analysis of the investment after burn-out treatment revealed that it consisted essentially of $SiO_2$, Al$_2$ $O_3$, P$_2$O$\_$5/, Mg$_3$(P $O_4$)$_2$, AlP $O_4$, Mg$_2$ $SiO_4$, MgAl$_2$ $O_4$ The mold reaction products were Ti$\_$5/Si$_3$ and Ti $O_2$ in case of CP-Ti casting and Ti $O_2$ and SiO$\_$x/ in case of Ti-25wt% Pd casting.

Effect of Alloying Elements on Creep Behavior of Mg-Al Alloys (Mg-Al 합금의 크리프 거동에 미치는 합금원소의 영향)

  • Lim, Hyun-Kyu;Kim, Shae-K.;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.44-49
    • /
    • 2012
  • In this study, three magnesium alloys were investigated; those are 1.5wt.% CaO added AM80, 1.0wt.% CaO added AM60, and conventional MRI153 alloys. Test specimens of three alloys were prepared by re-melting and casting into steel mold with ingots and machining. The mechanical properties and the creep behavior at 150 degrees Celsius of these specimens were determined and their microstructures were characterized using OM and SEM. For the application to die-casting, fluidity test were carried out with spiral mold. Compared with 1.0wt.% CaO added AM60 alloy, 1.5wt.% CaO added AM80 alloy exhibited good creep properties in all test conditions. Moreover, CaO added alloys showed better creep properties than MRI153 alloy at lower load condition. It is proposed that 1.5wt.% CaO added AM80 alloy is useful to apply to power-train parts such as transmission case in vehicles.

A Study on the Material and Production Method of Bronze Casting Earthen Mold - Focusing on Earthen Mold Excavated in Dongcheon-dong, Gyungju - (청동주조 토제범(土製范)의 재질과 제작기법 연구 - 경주 동천동 출토 토제범을 중심으로 -)

  • Son, Da-nim;Yang, Hee-jae
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.108-125
    • /
    • 2013
  • This study examined the actual reconstruction drawing, composite mineral, particle size and property test, fine organic matters, color differences and main ingredients of the earthen mold excavated in Dongcheon-dong, Gyungju. The cross-section of the inner mold and outer mold divides into inside (1st layer) and outside (2nd layer), with organic matters mixed outside. The cross-section has been altered due to heat and form removal agent. X-ray analysis revealed that the layer was made of minerals with high transmissivity and only quartz particles were observed through a polarizing microscope. The inside of cross-section in SEM observation identified enlarged air gap, with crack developed in the center, but no changes observed on the outside. The particle size of the composites is almost the same for the inner mold and outer mold and is silt clay loam. The ratio between silt clay and silt clay loam was about 2.7:1 and 2.9:1 respectively. In the property test, the density and absorption rate of inner mold and outer mold were similar, but porosity was different, with inner mold of 27.36% and outer mold of 31.09%. The color difference of cross-section seems to have been caused by the spread of soot on the 1st layer surface for removal of form or by the covering of ink to protect the 1st layer. Composite mineral analysis revealed the same composition for the inner mold and outer mold, except for the magnetite that was detected in the inner mold alone. As for the main ingredient analysis, the average content of $SiO_2$ was 71.64% and that of $Al_2O_3$ was 14.59%. As for the sub-ingredients, $Fe_2O_3$ was 4.51%, $K_2O$ 3.06%, $Na_2O$, MgO, CaO, $TiO_2$, $P_2O_5$ and MnO was less than 2%.