• Title/Summary/Keyword: Al/alumina

Search Result 819, Processing Time 0.021 seconds

Influence of nano alumina coating on the flexural bond strength between zirconia and resin cement

  • Akay, Canan;Tanis, Merve Cakirbay;Mumcu, Emre;Kilicarslan, Mehmet Ali;Sen, Murat
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • PURPOSE. The purpose of this in vitro study is to examine the effects of a nano-structured alumina coating on the adhesion between resin cements and zirconia ceramics using a four-point bending test. MATERIALS AND METHODS. 100 pairs of zirconium bar specimens were prepared with dimensions of $25mm{\times}2mm{\times}5mm$ and cementation surfaces of $5mm{\times}2mm$. The samples were divided into 5 groups of 20 pairs each. The groups are as follows: Group I (C) - Control with no surface modification, Group II (APA) - airborne-particle-abrasion with $110{\mu}m$ high-purity aluminum oxide ($Al_2O_3$) particles, Group III (ROC) - airborne-particle-abrasion with $110{\mu}m$ silica modified aluminum oxide ($Al_2O_3+SiO_2$) particles, Group IV (TCS) - tribochemical silica coated with $Al_2O_3$ particles, and Group V (AlC) - nano alumina coating. The surface modifications were assessed on two samples selected from each group by atomic force microscopy and scanning electron microscopy. The samples were cemented with two different self-adhesive resin cements. The bending bond strength was evaluated by mechanical testing. RESULTS. According to the ANOVA results, surface treatments, different cement types, and their interactions were statistically significant (P<.05). The highest flexural bond strengths were obtained in nano-structured alumina coated zirconia surfaces (50.4 MPa) and the lowest values were obtained in the control group (12.00 MPa), both of which were cemented using a self-adhesive resin cement. CONCLUSION. The surface modifications tested in the current study affected the surface roughness and flexural bond strength of zirconia. The nano alumina coating method significantly increased the flexural bond strength of zirconia ceramics.

Preparation and Properties of the Intra-type Al2O3Ag Nanocomposites (입내 분산형 Al2O3/Ag 나노복합체의 제조와 특성)

  • Cheon, Sung-Ho;Han, In-Sub;Awaji, Hideo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.208-213
    • /
    • 2007
  • Alumina/silver ($Al_2O_3/Ag$) nanocomposites with Ag content up to 9 vol% were prepared from nanopowder by soaking method using ${\gamma}-Al_2O_3$ of needle type and spark plasma sintering (SPS). The mechanical properties of specimens were investigated three-point flexural strength and toughness as a function of the Ag contents. The maximum flexural strength of the alumina/silver nanocomposite was 850 MPa for the 1 vol% composite, and also higher than monolith alumina as about 800 MPa at 3, 5, and 7 vol% Ag contents. Fracture toughness by single edged V-notch beam (SEVNB) was $4.05MPa{\cdot}m^{1/2}$ for the 3 vol% composite and maintained about $4.00MPa{\cdot}m^{1/2}$ at 5, and 7 vol% Ag content. Microstructure of fracture surface for each fracture specimens was observed. Due to the inhibition effect of alumina grain growth, the average grain size of nanocomposites depends on the content of Ag nano particles. The fracture morphology of nanocomposite with dislocation (sub-grain boundary) by silver nano-particles of second phases in the alumina matrix also showed transgranular fracture-mode compare with intergranular of monolith alumina. Thermal conductivity of specimens at room temperature was about 40 W/mK for the 1 vol% Ag content.

Effect of process conditions on crystal structure of Al PEO coating. I. Unipolar pulse and coating time (알루미늄 PEO 코팅의 결정상에 미치는 공정 조건에 대한 연구 I. Unipolar 펄스와 코팅시간)

  • Kim, Bae-Yeon;Ham, Jae-Ho;Lee, Deuk Yong;Kim, Yong-Nam;Jeon, Min-Seok;Kim, Kiyoon;Choi, Ji-Won;Kim, Sung Youp;Kim, Kwang Youp
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.59-64
    • /
    • 2014
  • Crystallographic phases of Plasma electrolytic oxidized Al alloy, A1050, were investigated. The electrolyte of PEO was $Na_2Si_2O_3$ and KOH. Unipolar pulse, $ 2000{\mu}sec$ with $400{\mu}sec+420V$ impulse, were applied for 2 min, 5 min, 15 min, and 30 min. ${\gamma}-Alumina$, as well as ${\alpha}-alumina$, was main crystal phase. ${\gamma}-Alumina$ was appeared in the beginning, then the amount of ${\alpha}-alumina$ was increased with time, but the amount of ${\gamma}-Alumina$ remained constant without any increasing. So, it is concluded that plasma gas produce ${\gamma}-Alumina$ at the first, and then ${\gamma}-Alumina$ transform ${\alpha}-alumina$ finally. During the transformation, high temperature of micro plasma gives transformation energy.

Bonding Behavior of Bioglass Coated Alumina (알루미나에 생체유리의 코팅시 결합의 특성)

  • 김정구;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.925-933
    • /
    • 1990
  • The possible use of bioglass,, which is one of the surface active biomaterials, as implants materials has drawn great attention due to their ability to bond to human living tissue. In the present work, the investigation was carried out to find the bonding phenomena between alumina substrate and bioglass(45S5) or fluorine-containing bioglass(45S5$.$4F), and the properties of coated bioglass. The stable bonding between alumina and bioglass was formed when heat-treated at 1150$^{\circ}C$ for 120 minutes or at 1250$^{\circ}C$ for 30 minutes for the 45S5, and at 1150$^{\circ}C$ for 30 minutes for the 45S5$.$4F. When bioglass coated alumina was heat-treated, great amount of Al was diffused into bioglass from alumina substrate. More Al was diffused into fluorine-containing bioglass than into bioglass without fluorine. At early stage of heat-tretment, the diffused alumina content was increased with the square root of time and it was also increased with the thickness of coating layer and heat-treatment temperatures. The alumina content became constant after its saturation for longer heat-treatment time. Coated bioglasses were crystallized to Na2O$.$CaO$.$3SiO2 when heat-treated at lower temperature, and to CaO$.$SiO2 at higher temperature.

  • PDF

Preparation of AlN Powder Using Mesoporous Alumina and Its Characterization (메조포러스 알루미나를 이용한 AlN 분말 제조 및 특성분석)

  • Kim, Eun Bee;Lee, Yoon Joo;Shin, Dong Geun;Kwon, Woo Teck;Kim, Soo Ryong;Kang, Mi Sook;Kim, Young Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.544-548
    • /
    • 2014
  • Aluminum nitride was synthesized using a carbothermal method from mesoporous alumina having a high surface area (> $1,000m^2/g$) as an aluminum source and CNTs (carbon nano tubes) as a carbon source. In this case the mesoporous alumina was used as the starting material instead of ${\alpha}-Al_2O_3$ with the expectation that the mesopores in mesoporous alumina act as channels for N2 gas and elimination of CO generated as by-product. It is also expected that the synthetic temperature should be lower compared to the use of ${\alpha}-Al_2O_3$ as a starting material due to its high surface area. The crystallinity of the produced aluminum nitride was studied by XRD and FT-IR, and the microstructure was investigated by FE-SEM. Also the purity of the aluminum nitride was analyzed through N/O determinator and ICP analysis.

Characteristics of $\gamma$-Alumina Prepared from Rehydrated Amorphous Alumina (수화한 무정형 알루미나로부터 제조된 $\gamma$-Alumina의 특성)

  • Kim, Yun-Seop;Go, Hyeong-Sin;Seo, Jeong-Gwon;Lee, Jeong-Min;Ha, Baek-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.978-985
    • /
    • 2001
  • The amorphous alumina was obtained by flash calcination of Bayer gibbsite[$Al(OH)_3$aluminum trihydroxide]. Rehydration and pore characteristics of $r-A1_2O_3$ prepared from rehydrated amorphous alumina were investigated. Crystal phases of pseudo-boehmite and bayerite were changed when amorphous alumina was hydrated at various conditions such as time, the ratio of water/alumina and pH. Specific surface areas and pore volumes of $r- A1_{2O}_3$ were influenced by the reaction time, water/alumina and PH of rehydration. The total pore volume of $r-A1_{2O}_3$increases with increasing the reaction time and ratio of water/alumina. Especially, the pure pseudo-boehmite of single phase could be prepared, when amorphous alumina was hydrated in the range of pH 6.5-8.0 in water/alumina= 10 at $90^{\circ}C$ for 7hr. The $r-Al_{2O}_3$, obtained by calcination of the prepared pseudo-boehmite at $500^{\circ}C$ for 2hrs, is characterized by the specific surface area of $265m^2$/g, total pore volume of $0.75cm^3$/g.

  • PDF

Study on grinding of the black alumina (블랙 알루미나의 연삭가공에 관한 연구)

  • Park, Jong-Nam;Noh, Seung-Hee;Lee, Dong-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.7-12
    • /
    • 2019
  • Generally, end effectors for automatic robots can use ceramics such as alumina(Al2O3) and silicon carbide(SiC). In this study, black alumina was developed and used in the semiconductor field through powder molding press forming. The black alumina can be mass produced.Alumina and black alumina were ground using a plane grinder to apply to the end effector of an automatic robot. The optimal cutting conditionswere found by analyzing the surface roughness(Ra) of black alumina through grinding. The alumina surface roughness is the feed rate was about 0.72 mm/sec, and the number of revolutions was best at 0.4879 ㎛ at 1700 rpm. In addition, the black alumina surface roughness shows a precision of less than 0.2 ㎛ in most cutting conditions. The feed rate was about 0.72 mm/sec, and the number of revolutions was best at 0.1361 ㎛ at 1900 rpm. The surface roughness of black alumina was better than that of alumina by about 0.35 to 0.47 ㎛.

Effect of process conditions on crystal structure of Al PEO coating. II. Bipolar and electrolyte (알루미늄 PEO 코팅의 결정상에 미치는 공정 조건에 대한 연구 II. Bipolar 펄스와 전해액)

  • Kim, Bae-Yeon;Ham, Jae-Ho;Lee, Deuk Yong;Kim, Yong-Nam;Jeon, Min-Seok;Kim, Kiyoon;Choi, Ji-Won;Kim, Sung Youp;Kim, Kwang Youp
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.65-69
    • /
    • 2014
  • Crystallographic phases of Plasma electrolytic oxidized Al alloy, A1100, A5052, A6061, A6063, A7075, were investigated. Two types of electrolyte $Na_2Si_2O_3$ and Na2P2O7 were also compared. Bipolar pulse, $2000{\mu}sec$ with $400{\mu}sec+420V$ impulse and $300{\mu}sec$ - impulse were applied for 20 min. ${\alpha}-alumina$, ${\gamma}-alumina$, ${\eta}-alumina$, $Al_{4.95}Si_{1.05}O_{9.52}$, and $(Al_{0.9}Cr_{0.1})_2O_3$ were mainly observed. Si, component of electrolyte, were moved into the PEO layer by bipolar pulse. Glassy phase was also observed at the surface of $Na_2Si_2O_3$ electrolyte treated PEO layer, and increased with the Mg content of Al alloy. It is concluded that at first glassy phase was formed by the micro plasma, and the high temperature of plasma turns glassy phase to several crystalline phases. And we could expect that many other crystalline phase could be formed by PEO process.

Synthesis of $\beta$-Alumina By Oxalate Coprecipitation Method and Its Crystallization Behavior (Oxalate 공침법에 의한 $\beta$-Alumina 합성과 결정화 거동)

  • 박용민;양유철;김형욱;박성수;손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.455-461
    • /
    • 1995
  • To investigate the synthesis of $\beta$-Al2O3 and its crystallization behavior by oxalate coprecipitation method, the optimum pH range for oxalate coprecipitates has been theoretically calculated from the solubility products and the equilibrium constans of each metal ionic species and their solubility diagram wa obtained. The optimum pH range for oxalate coprecipitates at room temperature was estimated as <4. In experiment, we found that the optimum condition for oxalate coprecipitates was pH<1, which was not doped with pH controller. The Na+ ions were easily exchanged for the NH4+ ions of NH4OH which was used as pH controller, and those NH4+ ions were supposed to affect the crystallization behavior of $\beta$-Al2O3. The thermal decomposition of all complexes was almost complete below 40$0^{\circ}C$. The primary product of the decomposition process was m-Al2O3, which transformed to $\beta$"- or $\beta$-Al2O3 at temperature higher than 100$0^{\circ}C$. We found that the powder prepared at 120$0^{\circ}C$ had only $\beta$"- and $\beta$-Al2O3.EX>-Al2O3.

  • PDF

Processing and properties of $Al_{2}O_{3}/SiC$ nanocomposites by polycarbosilane infiltration

  • Jung-Soo Ha;Chang-Sung Lim;Chang-Sam Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • $Al_{2}O_{3}/SiC$ nanocomposites were made by infiltrating partially sintered alumina bodies with polycarbosilane (PCS) solutions, which is a SiC polymer precursor, with pressureless sintering. The SiC content, densification, phases, strength, and microstructure were investigated with the processing parameters such as PCS solution concentration and heat treatment condition for PCS pyrolysis and sintering. The results were compared with those for pure alumina and nanocomposite samples made by the existing polymer precursor route (i.e. the PCS addition process). The SiC contents of up to 1.5 vol% were obtained by the PCS infiltration. PCS pyrolysis, followed by air heat treatment, was needed before sintering to avoid a cracking problem and to attain a densification as high as 98 % of theoretical. The nanocomposites exhibited significantly higher strength than pure alumina and those prepared by the PCS addition process despite larger grain size. Besides $\alpha-Al_{2}O_{3}/SiC$ and $\beta-SiC$ phases, mullite was present a little in the nanocomposites, which resulted from the reaction of $SiO_{2}$ in the pyrolysis product of PCS with the $Al_{2}O_{3}$ matrix during sintering. The nanocomposites had intagranular particles believed to be SiC, which is a typical feature of $Al_{2}O_{3}/SiC$ nanocomposites.