• Title/Summary/Keyword: Al/alumina

Search Result 819, Processing Time 0.04 seconds

Attrition Milling and Reaction-Sintering of the Oxide-Metal Mixed Powders: I. Milling Behavior as the Powder Characteristics (산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: I. 분말의 특성에 따른 분쇄 거동)

  • 황규홍;박정환;윤태경
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.337-345
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics having low firing shrinkage were prepared from the Al/Al2O3 or Al/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And in this milling process the effect of the characteristics of used powders was investigated. Attrition milling was much more effective in reducing the particle size of ceramic/metal mixed powders than ball milling. Powder mixtures of flake-type Al with coarse alumina was much more effectively comminuted by the attrition milling than the mixtures of globular-type Al with coarse alumina powders. And coarse alumina than fine alumina was much more beneficial in cutting and reducing the ductile Al particles. In the contrary to Al/Al2O3 powder mixtures, Al/ZrO2 powder mixtures was not effectively comminutd. But whether using the alumina ball media or attrition milled with Al2O3 powder rather than Al, the milling efficiency was much more increased.

  • PDF

Making Alumina Microcomponents from Al Powder

  • Kim, J.S.;Jiang, K.;Falticeanu, L.;Daviesd, G.J.;Chang, I.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.864-865
    • /
    • 2006
  • Alumina microcomponents have distinguishing advantages over Si counterpart. However, the shrinkage of alumina, as high as 20%, makes it difficult to produce precision components meeting a high tolerance. A new fabrication process presented to greatly reduce the shrinkage by producing alumina microcomponents from ultrafine Al powder. The process consists of forming Al powder components through sintering and turning the Al powder component into alumina. In this way, the shrinkage occurring in sintering the Al powder component will be compensated by the expansion appearing when the Al powder component turns into alumina. The process has proven successful.

  • PDF

Attrition Milling and Reaction-sintering of the Oxide-Metal Mixed Powders: II. Reaction-sintering Behavior as the Milling Characteristics of Powders (산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: II. 분말의 분쇄특성에 따른 반응소결 거동)

  • 황규홍;김의훈
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.448-456
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics were fabricated from the Al/Al2O3 or Zl/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And the effects of the milling characteristics of used raw powders on reaction sintering were investigated. After attrition milling and isopressing at 400 MPa the Al/Al2O3 specimen was oxidated at 1200℃ for 8 hours followed by sintering at 1550℃ for 3 hours. Because mixed powders of flake-type Al with coarse alumina was much more effectively comminuted than the globular-type Al with coarse alumina powders, it's sintered body of more than 97% theoretical density was achived, but low contents of Al leads to relatively higher shrinkage of about 8%. And because coarse alumina particles was much more beneficial in cutting and reducing the ductile Al particles, using the coarse alumina powder was much more effective in reaction sintering. Fused Ca-PSZ powder was reaction sintered with Al at 1550℃ for 3 hours and low shrinkage ZrO2-Al2O3 composites were fabricated. But because Al/Ca-PSZ powder mixtures were not effectively milled the reaction sintering and densification was difficult. And the Ca ion in Ca-PSZ grains diffused into alumina grains during sintering so that the unstabilization of Ca-PSZ body was occured which gave the microcracks in the specimens.

  • PDF

Effect of $\alpha-Al_2O_3$ Seeds and Alumina Sol on $\alpha$-Alumina Powder Derived from $\gamma-Al_2O_3$ ($\gamma$-알루미나부터 $\alpha$-알루미나 분말 제조에 있어 Seeding과 알루미나 졸이 미치는 영향)

  • 임경란;장진욱;임창섭;홍국선
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.482-488
    • /
    • 1995
  • The phase transformation temperature from $\theta$- to $\alpha$-alumina was lowered from 1214$^{\circ}C$ to 114$0^{\circ}C$ in DSC by treating ${\gamma}$-alumina obtained by calcination of boehmite at $700^{\circ}C$ for 2hrswith $\alpha$-Al2O3 seeds (d50=0.36${\mu}{\textrm}{m}$) and 3wt% of the alumina sol. $\alpha$-Al2O3 seeds seemed to lower to the transformation temperature and the alumina sol suppressed the high temperature agglormeration. The effect was increased as the amount of the sol was increased, which was supported by TEM and particle size distribution. For an example, spherical ${\gamma}$-alumina powder with d50=0.54${\mu}{\textrm}{m}$ was prepared by treating the ${\gamma}$-alumina with 9 wt% of the alumina sol and 3wt% of the $\alpha$-Al2O3. It sintered to 99% of the theoretical density at 150$0^{\circ}C$ for 2hrs. and it had relatively homogeneous microstructure with 2~3${\mu}{\textrm}{m}$ sized grains.

  • PDF

Comparison of aging fingerprint enhancement by pre-treatment of various initiator powders in the cyanoacrylate fuming method (다양한 개시제(initiator)분말 전처리(pre-treatment)를 통한 노화된 지문의 Cyanoacrylate Fuming법 현출 증강 비교)

  • Kim, Kyung-Soo;Lee, Yoon-Jeong;Seo, Kyung-Suk
    • Analytical Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.129-135
    • /
    • 2022
  • We tested the pre-treatment of alumina, leucine, alumina mixed with leucine at ratios of 9:1 (Al-Leu (9:1)) and 5:1 (Al-Leu (5:1)), and alumina mixed with sodium lactate at a ratio of 5:1 (Al-Lac (5:1)) on aged fingerprints (1, 7, 14, and 30 days after natural fingerprinting) before cyanoacrylate (CA) fuming to improve the development efficacy. As a result of the experiment, fingerprints with pre-treatment of alumina, leucine, Al-Leu (9:1), Al-Leu (5:1), and Al-Lac (5:1) showed better development efficacy (area and minutiae) than fingerprints without pre-treatment. Therefore, this modified CA fuming method improved the development efficacy with five pretreatments.

Al2O3/Al Composites Fabricated by Reaction between Sintered SiO2 and Molten Al (실리카 소결체와 용융 알루미늄과의 반응에 의한 $Al_2$O$_3$/Al 복합체의 제조)

  • 정두화;배원태
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.923-932
    • /
    • 1998
  • Al2O3/Al composites were produced by displacement reaction method which was carried out by imm-ersing the sintered silica preform which was prepared form fused silica powder in molten aluminu. an ac-tivation energy of 94kJ/mole was calculated from Al-SiO2 reaction data in 1000-130$0^{\circ}C$ temperature range With increase of reaction temperature the alumina particle in the Al2O3/Al composites produced with pur metal Al showed grain growth and the growth of alumina particle in Al2O3/Al composite produced by using of Mg contained Al alloy was inhibited. The flexural strength of Al2O3/Al composites produced at 100$0^{\circ}C$ showed the highest value as 393 MPa. Flexural strength of the composite fabricated at 85$0^{\circ}C$ showed higher deviation than that of the composite produced at above 100$0^{\circ}C$ Low flexural strength of the composite fa-bricated at 120$0^{\circ}C$ due to the growth of pore and alumina particle size. The hardness of composites de-pended on alumina content in Al2O3/Al composite decreased with increasing of aluminium content in case the same alumina content and increased with increasing of silicon content in composite.

  • PDF

Effect of Al Precursor Type on Mesoporous Alumina Particles Prepared by Spray Pyrolysis (분무열분해공정에 의한 메조기공 알루미나 제조에 있어 Al 전구체 영향)

  • Kim, Joo-Hyun;Jung, Kyeong-Youl;Park, Kyun-Young
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.209-215
    • /
    • 2010
  • Mesoporous alumina particles were prepared by spray pyrolysis using cetyltrimethyl-ammonium bromide (CTAB) as a structure directing agent and the effect of Al precursor types on the texture properties was studied using $N_2$ adsorption isotherms, small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The surface area and the microstructure of alumina particles were significantly influenced by the Al precursor type. The largest BET surface area was obtained when Al chloride was used, whereas alumina particles prepared from Al acetate had the largest pore volume. According to small-angle X-ray scattering (SAXS) analysis, the alumina powders prepared using nitrate and acetate precursors had a clear single SAXS peak around $2{\theta}=1.0{\sim}1.5^{\circ}$, indicating that regular mesopores with sponge-like structure were produced. On the basis of TEM, SAXS, and $N_2$ isotherm results, the chloride precursor was most profitable to obtain the largest surface area ($265\;m^2/g$), whereas, the nitrate precursor is useful for the preparation of non-hollow mesoporous alumina with regular pore size, maintaining high surface area (${\sim}233\;m^2/g$).

Effect of Glass Composition on the Properties of Glass-infiltrated Alumina(I) : Effect of Al2O3 (유리가 침투된 알루미나 복합체의 물성에 미치는 유리조성의 영향(I): Al2O3의 영향)

  • 이재희;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.301-308
    • /
    • 2003
  • Glass-infiltrated alumina, which can be used as an all-ceramic dental crown, was prepared. The glasses in the system of SiO$_2$-B$_2$O$_3$-Al$_2$O$_3$-CaO-La$_2$O$_3$with various amount of $Al_2$O$_3$infiltrated into a porous sintered alumina. The effect of $Al_2$O$_3$on the infiltration characteristics and its mechanical strength were studied. The corrosion of the sintered alumina by infiltrated glasses was prevented by increasing the amount of $Al_2$O$_3$in the glass batches, this increased the bending strength of the glass infiltrated alumina composite. The crack like voids in the sintered alumina was a cause of the deteriorating the mechanical strength of the composite, and this can be eliminated by sintering the alumina at 130$0^{\circ}C$. Glass infiltration under the vacuum atmosphere enhanced the hording strength of the composite up to 453$\pm$31 MPa.

A Study of Catalysts for Decomposition of ADN-Based Liquid Monopropellant (ADN기반 단일액상추진제 분해용 촉매 제조 및 특성 연구)

  • Jeon, Jong-Ki;Heo, Sujeong;Jo, Young Min;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.412-415
    • /
    • 2017
  • In this study, the decomposition performance of ammonia dinitramide (ADN) based liquid monopropellant was evaluated by using metal supported alumina bead catalyst. Alumina bead was calcined at $1200^{\circ}C$, and Pt and Cu were impregnated on alumina bead by excess water impregnation using a rotary evaporator. The decomposition temperature ($T_{dec}$) of ADN-based liquid monopropellant was measured in a home-made batch reactor. The decomposition temperature of Cu/$Al_2O_3$ catalyst was lower than that of Pt/$Al_2O_3$ catalyst, and $T_{dec}$ was about $130^{\circ}C$.

  • PDF