• 제목/요약/키워드: Al(III) coagulants

검색결과 16건 처리시간 0.019초

상수처리용 합성 무기고분자 Al(III)계 응집제의 화학적특성 (Characterization of Synthetic Polymeric AI(III) Inorganic Coagulants for Water Treatment)

  • 한승우;정철우;강임석
    • 한국환경과학회지
    • /
    • 제8권6호
    • /
    • pp.711-716
    • /
    • 1999
  • This research explored the feasibility of preparing and utilizing a prefonned polymeric solution of Al(III) for coagulation in water treatment. Slow base(NaOH) injection into supersaturated aluminum chloride and aluminum sulfate solutions did produce high yields of Al polymers useful to water treatment applications. The method of characterization analysis was based on timed spectrophotometer with ferron as a color developing reagent. The hydrolytic Al species were divided into $monomeric(Al_a),\;polymeric(Al_b),\;and\;precipitate(Al_c)$ from the difference in reaction kinetics. The analysis of PACl's characteristics showed that the quantity of polymeric Al produced at value of$ r(OH_{added}/AI)=2.2$ was $83\%$ of the total aluminum in solution, as showing maximum contents and precipitated Al was dramatically increased when r was increased above 2.35. In addition, the characteristics of polyaluminum sulfate (PAS) showed that polymeric Al contained at r = 0.75 was $18\%$ of the total aluminum in solution. The synthesized PACI and PAS were stable during storing period, as indicating negligible aging effect. The effect of sulfate ion on PACI was dependent on the concentration of sulfate ion. That is, polymeric species decrease and precipitate species increase as sulfate ion concentration increased. It can be concluded that the sulfate cause the formation of $Al(OH)_{3(S)}$ at low pH. However, The effect of calcium ion was negligible for distribution of Al species.

  • PDF

알루미늄계 무기 고분자 응집제에서 알루미늄 폴리머 생성과 응집효율과의 상관관계 (The Correlation Between the Polymeric Aluminum Species of Inorganic Coagulant and Its Coagulation Efficiency)

  • 김지연;이창하;손진식;윤제용
    • 상하수도학회지
    • /
    • 제18권3호
    • /
    • pp.331-336
    • /
    • 2004
  • The correlation between polymeric aluminum species of coagulant and its coagulation efficiency was investigated using several commercial polymeric Al(III) inorganic coagulants (Poly Aluminum Hydroxy Chloro Sulfate 2020 (PAHCS2020), Poly Aluminum Hydroxy Chloro Sulfate 2500 (PAHCS2500) which was introduced in Korean water treatment plants. The poly aluminum chloride (PAC), Poly Aluminum Hydroxide Chloride Silicate (PACS)) and the aluminum salts ($AlCl_3$, Alum ($Al_2(SO_4)_3$)) were used for the purpose of comparison. The comparison of the coagulation efficiency of each coagulant was made by turbidity removal through the standard jar testing procedure and the determination of the hydrolytic Al(III) species was made by the ferron method which can differentiate the monomeric aluminum species from the polymeric aluminum species. Overall, PAHCS2020 and PAHCS2500 showed the better performance in turbidity removal than the aluminum salts. The performance of coagulation was even better without adjustment of pH during the coagulation experiment. The positive correlation between polymeric aluminum species of coagulant and coagulation efficiency was found.

하수의 화학적 응집조건 및 응집제별 응집효율 분석 (Chemical Coagulation Conditions and Efficiency of Sewage with Al(III) and Fe(III) Coagulants)

  • 박준규;전동걸;박노백;전항배
    • 상하수도학회지
    • /
    • 제24권4호
    • /
    • pp.463-474
    • /
    • 2010
  • In this study, chemical coagulation conditions for treating combined sewer overflow(CSO) occurred during rainy season were evaluated by jar tests with aluminum sulfate[$Al_2(SO_4)_3{\cdot}17H_2O$] and ferric chloride[$FeCl_3{\cdot}6H_2O$]. The raw domestic sewage sampled from the primary sedimentation tank at a local sewage treatment plant was filtered through $150{\mu}m$ sieve before using. Point of zero charge(PZC) for various dose of aluminum sulfate occurred at pH 5.8-6.5, while for ferric chloride occurred at pH 5.3-6.0 in term of streaming current(SC) values. Charge neutralization ability of aluminum sulfate was bigger than that of ferric chloride. Optimum pH and dose of aluminum sulfate and ferric chloride were 6.2, 0.438mM and 5.8, 0.925mM, respectively. Removal efficiencies of TCOD, turbidity, SS and TP were 75, 97, 95, 96% with aluminum sulfate and 74, 96, 98, 99% with ferric chloride at their optimum coagulation conditions. More efficient removal of SS, TP and small particles was possible with ferric chloride at optimum coagulation conditions. Both SC values and COD removal started to increase where soluble phosphorus was completely removed.

응집-UF 막 공정의 적용시 금속염 응집제가 막오염에 미치는 영향 (Effect of Metal Salt Coagulant on Membrane Fouling During Coagulation-UF Membrane Process)

  • 정철우;심현술;손인식
    • Korean Chemical Engineering Research
    • /
    • 제45권5호
    • /
    • pp.523-528
    • /
    • 2007
  • 본 연구에서는 막분리 공정의 전처리 공정으로 응집 공정을 적용할 경우 응집 공정의 적용 가능성을 평가하고자 하였으며 사용된 응집제 종류에 따라 발생하는 금속염이 막오염에 미치는 영향을 파악하고자 하였다. 응집제 종류에 따른 투과 flux 실험결과 응집 공정을 전처리 공정으로 적용할 경우 막의 재질에 상관없이 응집효율이 우수한 PACl의 경우 투과 flux가 높게 나타났으며 전처리 응집 공정의 적용시 급속교반+UF 공정에 비하여 급속-완속교반+UF 공정의 경우 투과 flux 감소율이 낮게 나타났다. 급속교반 공정에 응집제를 첨가할 경우 다양한 형태의 가수분해종이 형성되어졌으며 금속염 응집제가 막오염에 미치는 영향을 살펴보기 위하여 시간에 따른 투과 flux 실험결과 금속염 응집제에 의한 막오염이 발생하였으며 응집제 주입량이 증가할수록 침전물 형태의 금속염 가수분해종의 발생이 증가하여 투과 flux 감소가 크게 나타났다.

ENHANCED COAGULATION: DETERMINATION OF CONTROLLING CRITERIA AND AN EFFECT ON TURBIDITY REMOVAL

  • Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • 제10권3호
    • /
    • pp.105-111
    • /
    • 2005
  • The applicability of the USEPA's (United States Environmental Protection Agency) three criteria of enhanced coagulation (criterion 1-TOC level less than 2 mg/l. before chlorination; criterion II-% requirement of TOC removal; criterion III-point of diminishing return) for Korean waters was evaluated in this study. This study also investigated an effect of enhanced coagulation on turbidity removal, and attempted to identify the best coagulant for enhanced coagulation. Three different waters were used in this study: one river water and two lake waters. five different coagulants were used: alum, liquid alum, PACl, ferric chloride with and without water. Results of this study showed that all three criteria were achievable for the tested waters. For these waters, controlling criterion was found to be different depending upon raw water characteristics. When initial Toe level was low(< 4 mg/L), criterion I (< 2 mg/L) could be the controlling criterion. As TOC level increased, criterion II (% TOC removal) became the controlling criteria. It was possible to achieve different goals of turbidity and TOC removals. Although the optimum region of TOC removal was more acidic than that of turbidity removal, there was no conflict between these two removals. The best coagulant was found to be different depending upon the evaluation tool: maximum and optimum removal. ferric chloride was more effective than alum in terms of the maximum TOC removal, while Al-based coagulant such as alum or PACl was the best coagulant in terms of the optimum TOC removal.

총인 수질기준강화를 위한 국내 하수종말처리장의 물리화학적처리 특성조사 및 경제성 분석 (Survey of Physicochemical Methods and Economic Analysis of Domestic Wastewater Treatment Plant for Advanced Treatment of Phosphorus Removal)

  • 박혜영;박상민;이기철;권오상;유순주;김신조
    • 대한환경공학회지
    • /
    • 제33권3호
    • /
    • pp.212-221
    • /
    • 2011
  • 우리나라의 공공하수처리시설은 생물학적 인 제거공정을 운전하고 있으나, '12년부터 지역구분(I, II, III)에 따라 각각 0.2, 0.3 및 0.5 mg/L로 강화되는 방류수수질기준을 준수하기 위해서는 화학물질을 이용한 추가적인 인 처리시설을 적용할 필요성이 대두되었다. 강화된 총인의 수질기준을 만족하기 위해 적용된 물리화학적 처리기술 성능의 구체적인 운영자료 구축을 위하여, 화학적 응집제 사용 중인 인 처리시설 중 모범적으로 가동하고 있는 국내 시설의 운영 데이터를 분석하여 처리성능을 평가하였다. 또한, jar 테스트를 이용해 물리화학적 인 제거공정 적용 시 최적 응집제 주입율 도출, 인 제거 및 슬러지 발생특성을 관찰하고 약품비용과 슬러지 발생증가량을 산정하여 실처리장에 응집제 적용 시 예상되는 경제성 분석을 하였다. 활성슬러지를 이용한 jar 테스트 결과, 0.5와 0.2 mg/L 이하의 총인 농도를 달성하기 위해 필요한 최소한의 응집제(황산알루미늄, 폴리염화알루미늄)의 주입농도는 각각 25와 30 mg/L (as $Al_2O_3$)이며, 2차 처리수의 경우에는 동일한 총인 농도를 달성하기 위해 요구되는 응집제 주입농도가 활성슬러지에 비해 약 1/12~1/3 수준으로 감소하였다. jar 테스트 결과, 활성슬러지에 응집제를 주입할 경우에 고형물 농도가 약 10~11%가 증가할 것으로 예측되었다. 한편, 활성슬러지에 응집제를 주입하는 경우의 응집제(황산알루미늄) 구입비는 2차 처리수에 주입하는 경우에 비해 약 4~10배 정도가 증가할 것으로 산정되었다. 또한, 슬러지 발생량은 약 4~10배 정도 증가할 것으로 예측되었다.