• Title/Summary/Keyword: Akt signaling

Search Result 555, Processing Time 0.037 seconds

Suppression of Migration and Invasion by Alnus hirsuta in Human Hepatocellular Carcinoma Cells

  • Bo-Ram Kim;Su Hui Seong;Tae-Su Kim;Jin-Ho Kim;Chan Seo;Ha-Nul Lee;Sua Im;Jung Eun Kim;Ji Min Jung;Jung Up Park;Kyung-Min Choi;Jin-Woo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.3
    • /
    • pp.207-218
    • /
    • 2023
  • Hepatocellular carcinoma (HCC) has a poor prognosis and high metastasis and recurrence rates. Although extracts of Alnus hirsuta (Turcz. ex Spach) Rupr. (AH) have been demonstrated to possess potential anti-inflammatory and anti-cancer activities, the underlying mechanism of AH in HCC treatment remains to be elucidated. We investigated the effects and potential mechanisms of AH on migration and invasion of Hep3B cells. Within the non-cytotoxic concentration range, AH significantly inhibited motility and invasiveness of Hep3B cells in a concentration-dependent manner. Inhibitory effects of AH on cell invasiveness are associated with tightening of tight junctions (TJs), as demonstrated by an increase in transepithelial electrical resistance. Immunoblotting indicated that AH decreased levels of claudins, which form major components of TJs and play key roles in the control and selectivity of paracellular transport. Furthermore, AH inhibited the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9 and simultaneously increased the levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These effects were related to inactivation of the phosphoinositide 3-kinase (PI3K)/AKT pathway in Hep3B cells. Therefore, AH inhibits migration and invasion of Hep3B cells by inhibiting the activity of MMPs and tightening TJs through suppression of claudin expression, possibly by suppressing the PI3K/AKT signaling pathway.

MMPP is a novel VEGFR2 inhibitor that suppresses angiogenesis via VEGFR2/AKT/ERK/NF-κB pathway

  • Na-Yeon Kim;Hyo-Min Park;Jae-Young Park;Uijin Kim;Ha Youn Shin;Hee Pom Lee;Jin Tae Hong;Do-Young Yoon
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.244-249
    • /
    • 2024
  • Many types of cancer are associated with excessive angiogenesis. Anti-angiogenic treatment is an effective strategy for treating solid cancers. This study aimed to demonstrate the inhibitory effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) in VEGFA-induced angiogenesis. The results indicated that MMPP effectively suppressed various angiogenic processes, such as cell migration, invasion, tube formation, and sprouting of new vessels in human umbilical vein endothelial cells (HUVECs) and mouse aortic ring. The inhibitory mechanism of MMPP on angiogenesis involves targeting VEGFR2. MMPP showed high binding affinity for the VEGFR2 ATP-binding domain. Additionally, MMPP improved VEGFR2 thermal stability and inhibited VEGFR2 kinase activity, suppressing the downstream VEGFR2/AKT/ERK pathway. MMPP attenuated the activation and nuclear translocation of NF-κB, and it downregulated NF-κB target genes such as VEGFA, VEGFR2, MMP2, and MMP9. Furthermore, conditioned medium from MMPP-treated breast cancer cells effectively inhibited angiogenesis in endothelial cells. These results suggested that MMPP had great promise as a novel VEGFR2 inhibitor with potent anti-angiogenic properties for cancer treatment via VEGFR2/AKT/ERK/NF-κB signaling pathway.

Fangchinoline Inhibits Cell Proliferation Via Akt/GSK-3beta/cyclin D1 Signaling and Induces Apoptosis in MDA-MB-231 Breast Cancer Cells

  • Wang, Chang-Dong;Yuan, Cheng-Fu;Bu, You-Quan;Wu, Xiang-Mei;Wan, Jin-Yuan;Zhang, Li;Hu, Ning;Liu, Xian-Jun;Zu, Yong;Liu, Ge-Li;Song, Fang-Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.769-773
    • /
    • 2014
  • Fangchinoline (Fan) inhibits cell proliferation and induces apoptosis in several cancer cell lines. The effects of Fan on cell growth and proliferation in breast cancer cells remain to be elucidated. Here, we show that Fan inhibited cell proliferation in the MDA-MB-231 breast cancer cell line through suppression of the AKT/Gsk-3beta/cyclin D1 signaling pathway. Furthermore, Fan induced apoptosis by increasing the expression of Bax (relative to Bcl-2), active caspase 3 and cytochrome-c. Fan significantly inhibited cell proliferation of MDA-MB-231 cells in a concentration and time dependent manner as determined by MTT assay. Flow cytometry analysis demonstrated that Fan treatment of MDA-MB-231 cells resulted in cell cycle arrest at the G1 phase, which correlated with apparent downregulation of both mRNA and protein levels of both PCNA and cyclin D1. Further analysis demonstrated that Fan decreased the phosphorylation of AKT and GSK-3beta. In addition, Fan up-regulated active caspase3, cytochrome-c protein levels and the ratio of Bax/Bcl-2, accompanied by apoptosis. Taken together, these results suggest that Fan is a potential natural product for the treatment of breast cancer.

Synergistic Renoprotective Effect of Melatonin and Zileuton by Inhibition of Ferroptosis via the AKT/mTOR/NRF2 Signaling in Kidney Injury and Fibrosis

  • Kyung Hee Jung;Sang Eun Kim;Han Gyeol Go;Yun Ji Lee;Min Seok Park;Soyeon Ko;Beom Seok Han;Young-Chan Yoon;Ye Jin Cho;Pureunchowon Lee;Sang-Ho Lee;Kipyo Kim;Soon-Sun Hong
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.599-610
    • /
    • 2023
  • According to recent evidence, ferroptosis is a major cell death mechanism in the pathogenesis of kidney injury and fibrosis. Despite the renoprotective effects of classical ferroptosis inhibitors, therapeutic approaches targeting kidney ferroptosis remain limited. In this study, we assessed the renoprotective effects of melatonin and zileuton as a novel therapeutic strategy against ferroptosis-mediated kidney injury and fibrosis. First, we identified RSL3-induced ferroptosis in renal tubular epithelial HK-2 and HKC-8 cells. Lipid peroxidation and cell death induced by RSL3 were synergistically mitigated by the combination of melatonin and zileuton. Combination treatment significantly downregulated the expression of ferroptosis-associated proteins, 4-HNE and HO-1, and upregulated the expression of GPX4. The expression levels of p-AKT and p-mTOR also increased, in addition to that of NRF2 in renal tubular epithelial cells. When melatonin (20 mg/kg) and zileuton (20 mg/kg) were administered to a unilateral ureteral obstruction (UUO) mouse model, the combination significantly reduced tubular injury and fibrosis by decreasing the expression of profibrotic markers, such as α-SMA and fibronectin. More importantly, the combination ameliorated the increase in 4-HNE levels and decreased GPX4 expression in UUO mice. Overall, the combination of melatonin and zileuton was found to effectively ameliorate ferroptosis-related kidney injury by upregulating the AKT/mTOR/ NRF2 signaling pathway, suggesting a promising therapeutic strategy for protection against ferroptosis-mediated kidney injury and fibrosis.

Protective Effect of Niclosamide on Lipopolysaccharide-induced Sepsis in Mice by Modulating STAT3 Pathway (니클로사마이드를 이용한 STAT3 신호전달 조절을 통해 LPS로 유발된 패혈증 동물모델 보호 효과 검증 연구)

  • Se Gwang JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2023
  • Sepsis is a systemic inflammatory response, with manifestations in multiple organs by pathogenic infection. Currently, there are no promising therapeutic strategies. Signal transducer and activator of transcription 3 (STAT3) is a cell signaling transcription factor. Niclosamide is an anti-helminthic drug approved by the Food and Drug Administration (FDA) as a potential STAT3 inhibitor. C57BL/6 mice were treated with an intraperitoneal injection of lipopolysaccharide (LPS). Niclosamide was administered orally 2 hours after the LPS injection. This study found that Niclosamide improved the survival and lung injury of LPS-induced mice. Niclosamide decreased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) in serum. The effects of Niclosamide on phosphoinositide 3-kinase (PI3K), AKT, nuclear factor-κB (NF-κB), and STAT3 signaling pathways were determined in the lung tissue by immunoblot analysis. Niclosamide reduced phosphorylation of PI3K, AKT, NF-κB, and STAT3 significantly. Furthermore, it reduced the phosphorylation of STAT3 by LPS stimulation in RAW 264.7 macrophages. Niclosamide also reduced the LPS-stimulated expression of proinflammatory mediators, including IL-6, TNF-α, and IL-1β. Niclosamide provides a new therapeutic strategy for murine sepsis models by suppressing the inflammatory response through STAT3 inhibition.

Apoptotic Effect of Extract from Artemisia annua Linné by Akt/mTOR/GSK-3β Signal Pathway in Hep3B Human Hepatoma Cells (Hep3B 간암세포에서 개똥쑥추출물로부터 Akt-mTOR-GSK3β 신호경로에 의한 apoptosis 효과)

  • Kim, Eun Ji;Kim, Guen Tae;Kim, Bo Min;Lim, Eun Gyeong;Ha, Sung Ho;Kim, Sang-Yong;Kim, Young Min
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.764-771
    • /
    • 2016
  • Extracts from Artemisia annua Linné (AAE) have been known to possess various functions, including anti-bacterial, anti-virus, and anti-oxidant effects. However, the mechanism of those effects of AAE is not well-known. The aim of this study was to analyze the inhibitory effects of AAE on cell proliferation of the human hepatoma cell line (Hep3B) and to examine its effects on apoptosis. Activation by phosphorylation of Akt is cell proliferation through the phosphorylation of TSC2, mTOR, and GSK-3β. We suggested that AAE may exert cancer cell apoptosis through Akt/mTOR/GSK-3β signal pathways and mitochondria-mediated apoptotic proteins. For this, we examined the effects of extracts of AAE on cell proliferation according to treatment concentration. Treatment with AAE not only reduced cell viability, but also resulted in the induced release of lactate dehydrogenase (LDH). These results were determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) assay. Furthermore, we determined the effects of apoptosis through Hoechst 33342 staining, annexinⅤ-propidium iodide (PI) staining, 5,5′, 6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1) staining, and Western blotting. Our study showed that the treatment of liver cancer cells with AAE resulted in the inhibition of Akt, TSC2, GSK-3β-phosphorylated, Bcl-2, and pro-caspase 3 and the activation of Bim, Bax, Bak, and cleaved PARP expressions. These results indicate that AAE induced apoptosis by means of a mitochondrial event through the regulate of Akt/mTOR/GSK-3β signaling pathways.

Cytotoxic Mechanism of Docosahexaenoic Acid in Human Oral Cancer Cells (인체 구강암 세포주에서 Docosahexaenoic acid에 의한 세포독성 기전)

  • Hong, Tae-Hwa;Kim, Hoon;Shin, Soyeon;Jing, Kaipeng;Jeong, Soyeon;Lim, Hyun;Yun, Donghyuk;Jeong, Ki-Eun;Lee, Myung-Ryul;Park, Jong-Il;Kweon, Gi-Ryang;Park, Seung Kiel;Hwang, Byung-Doo;Lim, Kyu
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.689-697
    • /
    • 2013
  • In the United States, about 40,000 new cases of oral cancer are diagnosed each year and nearly 7,800 patients died from it in 2012. Omega-3 polyunsaturated fatty acids have been found to have anticancer effects in a variety of cancer cell lines and animal models, but their effect in oral cancer remains unclear. This study was designed to examine the effect of docosahexaenoic acid (DHA, a kind of omega-3 fatty acid) on oral cancer cells and the molecular mechanism of its action. We found that exposure of squamous cell carcinoma-4 (SCC-4) and squamous cell carcinoma-9 (SCC-9) human oral cancer cells to DHA induced growth inhibition in a dose- and time-dependent manner. Meanwhile, in addition to the elevated levels of apoptotic markers, such as cleaved PARP, subG1 portion and TUNEL-positive nuclei, DHA led to autophagic vesicle formation and an increase in autophagic flux, indicating the involvement of both apoptosis and autophagy in the inhibitory effects of DHA on oral cancer cells. Further experiments revealed that the apoptosis and autophagy induced by DHA were linked to inhibition of mammalian target of rapamycin (mTOR) signaling by AKT inhibition and AMP-activated protein kinase (AMPK) activation in SCC-9 cells. Together, our results suggest that DHA induces apoptosis- and autophagy-associated cell death through the AMPK/AKT/mTOR signaling pathway in oral cancer cells. Thus, utilization of omega-3 fatty acids may represent a promising therapeutic approach for chemoprevention and treatment of human oral cancer.

Gardenia jasminoides Exerts Anti-inflammatory Activity via Akt and p38-dependent Heme Oxygenase-1 Upregulation in Microglial Cells (소교세포에서 heme oxygenase-1 발현 유도를 통한 치자(Gardenia jasminoides)의 항염증 효과)

  • Song, Ji Su;Shin, Ji Eun;Kim, Ji-Hee;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • Died Gardenia jasminoides fruit is used as a dye in the food and clothes industries in Asia. The present study investigated the anti-inflammatory effects of aqueous extract of G. jasminoides fruits (GJ) in BV-2 microglial cells. GJ inhibited lipopolysaccharide-induced nitric oxide (NO) secretion, inducible nitric oxide synthase (iNOS) expression, and reactive oxygen species production, without affecting cell viability. Furthermore, GJ increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner. Moreover, the inhibitory effect of GJ on iNOS expression was abrogated by small interfering RNA-mediated knock-down of HO-1. In addition, GJ induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. GJ-mediated expression of HO-1 was suppressed by LY294002, a phosphoinositide 3-kinase (PI-3K) inhibitor, and SB203580, a p38 kinase inhibitor, but not by the extracellular signal-regulated kinase (ERK) inhibitor PD98059 or c-Jun N-terminal kinase (JNK) inhibitor SP600125. GJ also enhanced the phosphorylation of Akt and p38. These results suggest that GJ suppresses the production of NO, a pro-inflammatory mediator, by inducing HO-1 expression via PI-3K/Akt/p38 signaling. These findings illustrate a novel molecular mechanism by which extract from G. jasminoides fruits inhibits neuroinflammation.

Heat shock protein 90 inhibitor AUY922 attenuates platelet-derived growth factor-BB-induced migration and proliferation of vascular smooth muscle cells

  • Kim, Jisu;Lee, Kang Pa;Kim, Bom Sahn;Lee, Sang Ju;Moon, Byung Seok;Baek, Suji
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.241-248
    • /
    • 2020
  • Luminespib (AUY922), a heat shock proteins 90 inhibitor, has anti-neoplastic and antitumor effects. However, it is not clear whether AUY922 affects events in vascular diseases. We investigated the effects of AUY922 on the platelet-derived growth factor (PDGF)-BB-stimulated proliferation and migration of vascular smooth muscle cells (VSMC). VSMC viability was detected using the XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reagent. To detect the attenuating effects of AUY922 on PDGF-BB-induced VSMCs migration in vitro, we performed the Boyden chamber and scratch wound healing assays. To identify AUY922-mediated changes in the signaling pathway, the phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) 1/2 was analyzed by immunoblotting. The inhibitory effects of AUY922 on migration and proliferation ex vivo were tested using an aortic ring assay. AUY922 was not cytotoxic at concentrations up to 5 nM. PDGF-BB-induced VSMC proliferation, migration, and sprout outgrowth were significantly decreased by AUY922 in a dose-dependent manner. AUY922 significantly reduced the PDGF-BB-stimulated phosphorylation of Akt and ERK1/2. Furthermore, PD98059 (a selective ERK1/2 inhibitor) and LY294002 (a selective Akt inhibitor) decreased VSMC migration and proliferation by inhibiting phosphorylation of Akt and ERK1/2. Greater attenuation of PDGF-BB-induced cell viability and migration was observed upon treatment with PD98059 or LY294002 in combination with AUY922. AUY922 showed anti-proliferation and anti-migration effects towards PDGF-BB-induced VSMCs by regulating the phosphorylation of ERK1/2 and Akt. Thus, AUY922 is a candidate for the treatment of atherosclerosis and restenosis.

Alaria esculenta Extract Protects against Oxidative Damage by Inducing Heme Oxygenase-1 Expression via Akt and Nrf2

  • Choi, Chun-Yeon;Jo, Guk-Heui;Lee, Jung-Im;Seo, Young-Wan;Han, Tae-Jun;Choi, Il-Whan;Liu, Kwang-Hyeon;Oh, Sang-Taek;Kim, Dong-Eun;Jang, Won-Hee;Seog, Dae-Hyun;Park, Yeong-Hong;Yea, Sung-Su
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.120-125
    • /
    • 2009
  • Alaria esculenta is a brown seaweed found in the Arctic. This study investigated the protective effect of A. esculenta extract (AEE) against oxidant-mediated injury and its mode of action in RAW264.7 macrophages. The methyl thiazolyl tetrazolium (MTT) assay showed that $H_2O_2$ treatment reduced cell viability, whereas AEE protected cells from $H_2O_2$-mediated cytotoxicity in a dose-dependent manner. Because heme oxygenase-1 (HO-1) is known to protect cells against oxidative damage, we investigated the effect of AEE on HO-1 gene expression and HO enzyme activity. The protective effect of AEE against $H_2O_2$-induced injury was correlated with increased HO enzyme activity. AEE also induced HO-1 mRNA and protein expression, as determined RT-PCR and Western blotting, respectively. To characterize the mechanisms by which AEE induces HO-1 gene expression, we examined the effect of AEE on the nuclear translocation of NF-E2-related factor-2 (Nrf2) and Akt phosphorylation. AEE treatment activated upstream signaling for HO-1 gene expression, including the nuclear translocation of Nrf2 and Akt phosphorylation. Collectively, these results suggest that AEE has anti-oxidant activity that is mediated, at least in part, via the activation of Nrf2 and Akt and the subsequent induction of HO-1 gene expression.