• Title/Summary/Keyword: Akt pathway

Search Result 478, Processing Time 0.03 seconds

Potential Targets for Prevention of Colorectal Cancer: a Focus on PI3K/Akt/mTOR and Wnt Pathways

  • Pandurangan, Ashok Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2201-2205
    • /
    • 2013
  • Colorectal cancer (CRC) is one of the most common cancers in many parts of the world. Its development is a multi-step process involving three distinct stages, initiation that alters the molecular message of a normal cell, followed by promotion and progression that ultimately generates a phenotypically altered transformed malignant cell. Reports have suggested an association of the phosphoinositide-3-kinase (PI3K)/Akt pathway with colon tumorigenesis. Activation of Akt signaling and impaired expression of phosphatase and tensin homolog (PTEN) (a negative regulator of Akt) has been reported in 60-70% of human colon cancers and inhibitors of PI3K/Akt signaling have been suggested as potential therapeutic agents. Around 80% of human colon tumors possess mutations in the APC gene and half of the remainder feature ${\beta}$-catenin gene mutations which affect downstream signaling of the PI3K/Akt pathway. In recent years, there has been a great focus in targeting these signaling pathways, with natural and synthetic drugs reducing the tumor burden in different experiment models. In this review we survey the role of PI3K/Akt/mTOR and Wnt signaling in CRC.

Screening and Characterization of Novel Akt/PKB inhibitors, SWU5 and SWU9

  • Ko, Jong-Hee;Yeon, Seung-Woo;Lee, Hong-Sub;Kim, Tae-Yong;Noh, Dong-Youn;Shin, Kyong-Soon;Hong, Soon-Kwang;Kang, Sang-Sun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.168.2-168.2
    • /
    • 2003
  • Akt/Ptotein Kinase B (PKB) is a serine/threonine kinase and activated by PI3K pathway. Akt/PKB regulates a variety of cellular responses including proliferations, differentiations and insulin signaling pathway. Recent evidence also indicates that the abnormal activities or expression of Akt/PKB is closely associated with cancer, diabetes and neuro-degenerative diseases. These findings mean that Akt/PKB is likely to be a new therapeutic target for the treatment of disease. (omitted)

  • PDF

Hydrogen sulfide ameliorates abdominal aorta coarctation-induced myocardial fibrosis by inhibiting pyroptosis through regulating eukaryotic translation initiation factor 2α phosphorylation and activating PI3K/AKT1 pathway

  • Yaling Li;Zhixiong Wu;Jiangping Hu;Gongli Liu;Hongming Hu;Fan Ouyang;Jun Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.345-356
    • /
    • 2023
  • This study aimed to assess the effects of exogenous hydrogen sulfide (H2S) on abdominal aorta coarctation (AAC) induced myocardial fibrosis (MF) and autophagy in rats. Forty-four Sprague-Dawley rats were randomly divided into control group, AAC group, AAC + H2S group, and H2S control group. After a model of rats with AAC was built surgically, AAC + H2S group and H2S group were injected intraperitoneally with H2S (100 µmol/kg) daily. The rats in the control group and the AAC group were injected with the same amount of PBS. We observed that H2S can improve left ventricular function and the deposition of myocardial collagen fibers, inhibit pyroptosis, down-regulate the expression of P-eif2α in myocardial tissue, and inhibit cell autophagy by activating the phosphatidylinositol 3-kinase (PI3K)/AKT1 signaling pathway (p < 0.05). In addition, angiotensin II (1 µM) H9c2 cardiomyocytes were injured in vitro experiments, and it was also observed that pyroptosis was inhibited after H2S (400 µmol/kg) intervention, the expression of P-eif2α in cardiomyocytes was significantly down-regulated, and the PI3K/AKT1 signaling pathway was activated at the same time. Therefore, increasing the expression of P-eif2α reverses the activation of the PI3K/AKT1 signaling pathway by H2S. In conclusion, these findings suggest that exogenous H2S can ameliorate MF in rats with AAC by inhibiting pyroptosis, and the mechanism may be associated with inhibiting the phosphorylation of eif2α and activating the PI3K/AKT1 signaling pathway to inhibit excessive cell autophagy.

Dihydroaustrasulfone alcohol induces apoptosis in nasopharyngeal cancer cells by inducing reactive oxygen species-dependent inactivation of the PI3K/AKT pathway

  • Kok-Tong Tan;Yu-Hung Shih;Jiny Yin Gong;Xiang Zhang;Chiung-Yao Huang;Jui-Hsin Su;Jyh-Horng Sheu;Chi-Chen Lin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.383-398
    • /
    • 2023
  • Dihydroaustrasulfone alcohol (DA), the synthetic precursor of a natural compound (austrasulfone) isolated from the coral species Cladiella australis, has shown cytotoxic effects against cancer cells. However, it is unknown whether DA has antitumor effects on nasopharyngeal carcinoma (NPC). In this study, we determined the antitumor effects of DA and investigated its mechanism of action on human NPC cells. The MTT assay was used to determine the cytotoxic effect of DA. Subsequently, apoptosis and reactive oxygen species (ROS) analyses were performed by using flow cytometry. Apoptotic and PI3K/AKT pathway-related protein expression was determined using Western blotting. We found that DA significantly reduced the viability of NPC-39 cells and determined that apoptosis was involved in DA-induced cell death. The activity of caspase-9, caspase-8, caspase-3, and PARP induced by DA suggested caspase-mediated apoptosis in DA-treated NPC-39 cells. Apoptosis-associated proteins (DR4, DR5, FAS) in extrinsic pathways were also elevated by DA. The enhanced expression of proapoptotic Bax and decreased expression of antiapoptotic BCL-2 suggested that DA mediated mitochondrial apoptosis. DA reduced the expression of pPI3K and p-AKT in NPC-39 cells. DA also reduced apoptosis after introducing an active AKT cDNA, indicating that DA could block the PI3K/AKT pathway from being activated. DA increased intracellular ROS, but N-acetylcysteine (NAC), a ROS scavenger, reduced DA-induced cytotoxicity. NAC also reversed the chances in pPI3K/AKT expression and reduced DA-induced apoptosis. These findings suggest that ROS-mediates DA-induced apoptosis and PI3K/AKT signaling inactivation in human NPC cells.

Inhibition of PI3K/AKT Signaling Pathway Enhances Cordycepin-Induced Apoptosis in Human Gastric Cancer Cells (인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.835-842
    • /
    • 2016
  • The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.

Fibronectin expression is upregulated by PI-3K/Akt activation in tamoxifen-resistant breast cancer cells

  • You, Daeun;Jung, Seung Pil;Jeong, Yisun;Bae, Soo Youn;Lee, Jeong Eon;Kim, Sangmin
    • BMB Reports
    • /
    • v.50 no.12
    • /
    • pp.615-620
    • /
    • 2017
  • Fibronectin (FN) plays important roles in the EMT in a variety of cancer cell types. However, the mechanism by which FN expression is regulated in tamoxifen-resistant (TamR) breast cancer cells has not yet been fully elucidated. Aberrant FN expression was associated with poor prognosis in patients with luminal type A breast cancer. In addition, FN was upregulated in TamR cells. To investigate the mechanism by which FN expression is regulated, we assessed the levels of phosphorylated Akt, JNK, and STAT3 and found that they were all increased in TamR cells. Induction of FN expression was dampened by LY294002 or AKT IV in TamR cells. Furthermore, FN expression was increased by constitutively active (CA)-Akt overexpression in tamoxifen-sensitive MCF7 (TamS) cells and colony formation of TamR cells was blocked by AKT IV treatment. Taken together, these results demonstrate that FN expression is upregulated through the PI-3K/Akt pathway in tamoxifen-resistant breast cancer cells.

Baicalin Induces Apoptosis in Leukemia HL-60/ADR Cells via Possible Down-regulation of the PI3K/Akt Signaling Pathway

  • Zheng, Jing;Hu, Jian-Da;Chen, Ying-Yu;Chen, Bu-Yuan;Huang, Yi;Zheng, Zhi Hong;Liu, Ting-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1119-1124
    • /
    • 2012
  • Background: The effect and possible mechanism of traditional Chinese medicine, baicalin, on the PI3K/Akt signaling pathway in drug-resistant human myeloid leukemia HL-60/ADR cells have been investigated in this current study. Methods: HL-60/ADR cells were treated by 20, 40, $80\;{\mu}mol/L$ baicalin followed by cell cycle analysis at 24h. The mRNA expression level of the apoptosis related gene, Bcl-2 and bad, were measured by RT-PCR on cells treated with $80\;{\mu}mol/L$ baicalin at 12, 24 and 48hr. Western blot was performed to detect the changes in the expression of the proteins related to HL-60/ADR cell apoptosis and the signaling pathway before and after baicalin treatment, including Bcl-2, PARP, Bad, Caspase 3, Akt, p-Akt, NF-${\kappa}B$, p-NF-${\kappa}B$, mTOR and p-mTOR. Results: Sub-G1 peak of HL-60/ADR cells appeared 24 h after $20\;{\mu}mol/L$ baicalin treatment, and the ratio increased as baicalin concentration increased. Cell cycle analysis showed 44.9% G0/G1 phase cells 24 h after baicalin treatment compared to 39.6% in the control group. Cells treated with $80\;{\mu}mol/L$ baicalin displayed a trend in decreasing of Bcl-2 mRNA expression over time. Expression level of the Bcl-2 and PARP proteins decreased significantly while that of the PARP, Caspase-3, and Bad proteins gradually increased. No significant difference in Akt expression was observed between treated and the control groups. However, the expression levels of p-Akt, NF-${\kappa}B$, p-NF-${\kappa}B$, mTOR and p-mTOR decreased significantly in a time-dependent manner. Conclusions: We conclude that baicalin may induce HL-60/ADR cell apoptosis through the PI3K/AKT signaling pathway.

Peroxisome Proliferator-Activated Receptor-Gamma Agonist 4-O-Methylhonokiol Induces Apoptosis by Triggering the Intrinsic Apoptosis Pathway and Inhibiting the PI3K/Akt Survival Pathway in SiHa Human Cervical Cancer Cells

  • Hyun, Seungyeon;Kim, Man Sub;Song, Yong Seok;Bak, Yesol;Ham, Sun Young;Lee, Dong Hun;Hong, Jintae;Yoon, Do Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.334-342
    • /
    • 2015
  • 4-O-Methylhonokiol (MH), a bioactive compound derived from Magnolia officinalis, is known to exhibit antitumor effects in various cancer cells. However, the precise mechanism of its anticancer activity in cervical cancer cells has not yet been studied. In this study, we demonstrated that MH induces apoptosis in SiHa cervical cancer cells by enhancing peroxisome proliferator-activated receptor-gamma (PPARγ) activation, followed by inhibition of the PI3K/Akt pathway and intrinsic pathway induction. MH upregulated PPARγ and PTEN expression levels while it decreased p-Akt in the MH-induced apoptotic process, thereby supporting the fact that MH is a PPARγ activator. Additionally, MH decreased the expression of Bcl-2 and Bcl-XL, inducing the intrinsic pathway in MH-treated SiHa cells. Furthermore, MH treatment led to the activation of caspase-3/caspase-9 and proteolytic cleavage of polyADP ribose polymerase. The expression levels of Fas (CD95) and E6/E7 oncogenes were not altered by MH treatment. Taken together, MH activates PPARγ/PTEN expression and induces apoptosis via suppression of the PI3K/Akt pathway and mitochondria-dependent pathways in SiHa cells. These findings suggest that MH has potential for development as a therapeutic agent for human cervical cancer.

Inhibition of eNOS/sGC/PKG Pathway Decreases Akt Phosphorylation Induced by Kainic Acid in Mouse Hippocampus

  • Lee, Sang-Hyun;Byun, Jong-Seon;Kong, Pil-Jae;Lee, Hee-Jae;Kim, Duk-Kyung;Kim, Hae-Sung;Sohn, Jong-Hee;Lee, Jae-Jun;Lim, So-Young;Chun, Wan-Joo;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The serine/threonine kinase Akt has been shown to play a role of multiple cellular signaling pathways and act as a transducer of many functions initiated by growth factor receptors that activate phosphatidylinositol 3-kinase (PI3K). It has been reported that phosphorylated Akt activates eNDS resulting in the production of NO and that NO stimulates soluble guanylate cyclase (sGC), which results in accumulation of cGMP and subsequent activation of the protein kinase G (PKG). It has been also reported that PKG activates PI3K/Akt signaling. Therefore, it is possible that PI3K, Akt, eNOS, sGC, and PKG form a loop to exert enhanced and sustained activation of Akt. However, the existence of this loop in eNOS-expressing cells, such as endothelial cells or astrocytes, has not been reported. Thus, we examined a possibility that Akt phosphorylation might be enhanced via eNOS/sGC/PKG/PI3K pathway in astrocytes in vivo and in vitro. Phosphorylation of Akt was detected in astrocytes after KA treatment and was maintained up to 72 h in mouse hippocampus. 2 weeks after KA treatment, astrocytic Akt phosphorylation was normalized to control. The inhibition of eNOS, sGC, and PKG significantly decreased Akt and eNDS phosphorylation induced by KA in astrocytes. In contrast, the decreased phosphorylation of Akt and eNDS by eNDS inhibition was significantly reversed with PKG activation. The above findings in mouse hippocampus were also observed in primary astrocytes. These data suggest that Akt/eNOS/sGC/PKG/PI3K pathway may constitute a loop, resulting in enhanced and sustained Akt activation in astrocytes.

Involvement of Akt in naphthoquinone analog-induced apoptosis in HL -60 cells

  • Kang, Seung-Koo;Mun, Jung-Yee;Kim, Hae-Jong;Chun, Young-Jin;Kim, Mie-Young
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.336.3-337
    • /
    • 2002
  • We previously reported that a synthetic naphthoquinone analog. 2.3-dichloro-5.8-dihydroxy-1, 4-naphthoquinone (NA). effectively induces apoptosis in human leukemic HL-60 cells. However. the cellular mechanism by which NA induces cell death remain unclear. In this study. we show that NA induces activation of capases. release of cytochrome c and upregulation of proapoptotic Bax protein. Futhermore. NA suppressed phosphorylation of Akt and Bad. suggesting that Akt regulates NA-induced apoptosis. Expresson of a dominant negative Akt enhancde NA-induced apoptosis. suggesting that naphthoquinone analog induces apoptosis through activating proapoptotic pathway and by the inactivation of antiapoptotic pathway.

  • PDF