• Title/Summary/Keyword: Akt inhibitor

Search Result 230, Processing Time 0.02 seconds

Molecular Target Therapy of AKT and NF-kB Signaling Pathways and Multidrug Resistance by Specific Cell Penetrating Inhibitor Peptides in HL-60 Cells

  • Davoudi, Zahra;Akbarzadeh, Abolfazl;Rahmatiyamchi, Mohammad;Movassaghpour, Ali Akbar;Alipour, Mohsen;Nejati-Koshki, Kazem;Sadeghi, Zohre;Dariushnejad, Hassan;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4353-4358
    • /
    • 2014
  • Background: PI3/AKT and NF-kB signaling pathways are constitutively active in acute myeloid leukemia and cross-talk between the two has been shown in various cancers. However, their role in acute myeloid leukemia has not been completely explored. We therefore used cell penetrating inhibitor peptides to define the contributions of AKT and NF-kB to survival and multi drug resistance (MDR) in HL-60 cells. Materials and Methods: Inhibition of AKT and NF-kB activity by AKT inhibitor peptide and NBD inhibitor peptide, respectively, resulted in decreased expression of mRNA for the MDR1 gene as assessed by real time PCR. In addition, treatment of HL-60 cells with AKT and NBD inhibitor peptides led to inhibition of cell viability and induction of apoptosis in a dose dependent manner as detected by flow cytometer. Results: Finally, co-treatment of HL-60 cells with sub-optimal doses of AKT and NBD inhibitor peptides led to synergistic apoptotic responses in AML cells. Conclusions: These data support a strong biological link between NF-kB and PI3-kinase/AKT pathways in the modulation of antiapoptotic and multi drug resistant effects in AML cells. Synergistic targeting of these pathways using NF-kB and PI3-kinase/AK inhibitor peptides may have a therapeutic potential for AML and possibly other malignancies with constitutive activation of these pathways.

COX-2 INHIBITOR INDUCED APOPTOSIS IN ORAL SQUAMOUS CELL CARCINOMA CELL LINE THROUGH AKT PATHWAY (COX-2 억제제에 의한 AKT 경로를 통한 구강편평세포암종 세포주의 세포사멸 유도)

  • Seo, Young-Ho;Han, Se-Jin;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.30-40
    • /
    • 2008
  • The objectives of this study was to check up the effect of celecoxib, COX-2 inhibitor, on the pathogenesis of oral squamous cell carcinoma. After mefenamic acid, aspirin and celecoxib, COX-2 inhibitor, were inoculated to HN 22 cell line, the following results were obtained through tumor cell viability by wortmannin, growth curve of tumor cell line, apoptotic index, PGE2 synthesis, total RNA extraction, RT-PCR analysis and TEM features. 1. When wortmannin and celecoxib were given together, the survival rate of tumor cells was lowest about 47 %. So wortmannin had an effect on the decrease of survival rate of tumor cells. 2. In growth curve, the slowest growth was observed in celecoxib inoculated group. 3. The synthesis of PGE2 was decreased in all group and the obvious suppression and highest apoptotic index was observed in celecoxib inoculated group. 4. Suppression of expression of COX-2 mRNA was evident in celecoxib inoculated group. But that of COX-1,2 mRNA was observed in mefenamic acid inoculated group and aspirin inoculated group. 5. In celecoxib inoculated group, mRNA expression of AKT1 was decreased and that of PTEN & expression of caspase 3 and 9 was evidently increased. Depending on above results, when celecoxib was inoculated to oral squamous cell carcinoma cell line, an increase of mRNA expression of caspase 3,9 and PTEN is related to a decrease of mRNA expression of AKT1. Wortmannin had an effect on the decrease of survival rate of tumor cells. Celecoxib might induce apoptosis of tumor cell by suppression of AKT1 pathway and COX-2 inhibition. This results suggested that COX-2 inhibitor might be significantly effective in chemoprevention of oral squamous cell carcinoma.

Attenuation of insulin resistance using steamed Polygonatum odoratum var pluriflorum extract in rat skeletal muscle cells L6 myoblast (렛 근육세포 L6에서 둥굴레 추출물의 인슐린저항성 개선)

  • Choi, Mi-Ae
    • The Korea Journal of Herbology
    • /
    • v.31 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Objectives : The purpose of this study was to investigate inhibitory effects of steamed Polygonatum odoratum extract (POE) on insulin resistance in rat skeletal muscle cells, L6 cells.Methods : Polygonatum odoratum (P. odoratum) extract was extracted with ethyl acetate. Activity of α-glucosidase in POE was measured for blood glucose regulation. MTT assay was examined for cell toxicity. Western blot analysis for measurement of adiponectine, peroxisome proliferator-activated receptorγ (PPARγ), insulin receptor substrate (IRS), glucose transporter 4 (Glut-4) and phosphorylation of serine/threonine-specific protein kinase (Akt) expressions were performed. Akt signaling pathway were analyzed with LY294002, which is a specific PI3K/Akt inhibitor.Results : The results revealed that POE inhibited α-glucosidase activity. Treatment of POE in L6 cells inhibited the differentiation of L6 cells compared to those of vehicl control. Additionally, protein expressions of adiponectine, PPARγ, IRS and Glut-4 were significantly regulated compared to those of vehicle control (p < 0.05), respectively. Futhermore, phosphorylation of Akt was increased in L6 cells treated with POE compared to that of vehicle control (p < 0.05). pAkt expression was significantly accentuated with Akt inhibitor (LY294002).Conclusions : These results suggest that POE may have potential as a natural agent for prevention/improvement of diabetes, especially, regulation of blood glucose. Therefore, further additional study should be conducted to elucidate in depth the pharmaceutical efficacy of these.

Inhibition of the interaction between Hippo/YAP and Akt signaling with ursolic acid and 3'3-diindolylmethane suppresses esophageal cancer tumorigenesis

  • Ruo Yu Meng;Cong Shan Li;Dan Hu;Soon-Gu Kwon;Hua Jin;Ok Hee Chai;Ju-Seog Lee;Soo Mi Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.493-511
    • /
    • 2023
  • Hippo/YAP signaling hinders cancer progression. Inactivation of this pathway contributes to the development of esophageal cancer by activation of Akt. However, the possible interaction between Akt and Hippo/YAP pathways in esophageal cancer progression is unclear. In this study, we found that ursolic acid (UA) plus 3'3-diindolylmethane (DIM) efficiently suppressed the oncogenic Akt/Gsk-3β signaling pathway while activating the Hippo tumor suppressor pathway in esophageal cancer cells. Moreover, the addition of the Akt inhibitor LY294002 and the PI3K inhibitor 3-methyladenine enhanced the inhibitory effects of UA plus DIM on Akt pathway activation and further stimulated the Hippo pathway, including the suppression of YAP nuclear translocation in esophageal cancer cells. Silencing YAP under UA plus DIM conditions significantly increased the activation of the tumor suppressor PTEN in esophageal cancer cells, while decreasing p-Akt activation, indicating that the Akt signaling pathway could be down-regulated in esophageal cancer cells by targeting PTEN. Furthermore, in a xenograft nude mice model, UA plus DIM treatment effectively diminished esophageal tumors by inactivating the Akt pathway and stimulating the Hippo signaling pathway. Thus, our study highlights a feedback loop between the PI3K/Akt and Hippo signaling pathways in esophageal cancer cells, implying that a low dose of UA plus DIM could serve as a promising chemotherapeutic combination strategy in the treatment of esophageal cancer.

Effect of Puerariae Radix Ethanol Extract on the Proliferation of Human Dermal Papilla Cells (인체 모유두세포의 증식에 미치는 갈근 에탄올추출물의 효과)

  • Park, Seol A;Ko, Kyoung Sook;In, Myoung Hee;Mun, Yeun Ja;Woo, Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • In this study, we investigated the effect of Puerariae Radix ethanol extracts (EPR). The effect of the EPR on proliferation of human hair dermal papilla cells(HHDPCs) by MTT assay and observed Expression of mechanisms that regulate cell proliferation extracellular signal-regulated kinase(ERK) and Akt by western blot. The results showed EPR increased the proliferation of HHDPCs and up-regulation phosphorylation of ERK and Akt. ERK and Akt increased by EPR inhibited phosphorylation by PD98059 (ERK inhibitor) and LY294002 (Akt inhibitor), and cell proliferation was also inhibited. These results suggested EPR increases the proliferation of HHDPCs through phosphorylation of ERK and Akt, and therefore is a beneficial effect for the alopecia treatment.

Involvement of Multiple Signaling Molecules in Peptidoglycan-induced Expression of Interleukin-1α in THP-1 Monocytes/Macrophages (THP-1 단핵구의 펩티도글리칸 유래 인터루킨-1 알파 발현에서 TLR2, PI3K/Akt/mTOR, MAPKs의 역할)

  • Heo, Weon;Son, Yonghae;Cho, Hyok-rae;Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.421-429
    • /
    • 2022
  • The expression of interleukin-1α (IL-1α) is elevated in monocytic cells, such as monocytes and macro-phages, within atherosclerotic arteries, yet the cellular molecules involved in cytokine upregulation remain unclear. Because peptidoglycan (PG), a major component of gram-positive bacterial cell walls, is detected within the inflammatory cell-rich regions of atheromatous plaques, it was investigated if PG contributes to IL-1α expression in monocytes/macrophages. Exposure of THP-1 monocytic cells to PG resulted in elevated levels of IL-1α gene transcripts and increased secretion of IL-1α protein. The transcription and secretion of IL-1α were abrogated by OxPAPC, an inhibitor of TLR2/4, but not by polymyxin B that inhibits lipopolysaccharide-induced TLR4 activation. To understand the molecular mechanisms of the inflammatory responses due to bacterial pathogen-associated molecular patterns (PAMPs) in diseased arteries, we attempted to determine the cellular factors involved in the PG-induced upregulation of IL-1α expression. Pharmacological inhibition of cell signaling pathways with LY294002 (a PI3K inhibitor), Akti IV (an inhibitor of Akt activation), rapamycin (an mTOR inhibitor), U0126 (a MEK inhibitor), SB202190 (a p38 MAPK inhibitor), SP6001250 (a JNK inhibitor), and DPI (a NOX inhibitor) also significantly attenuated the PG-mediated expression of IL-1α. These results suggest that PG induces the monocytic or macrophagic expression of IL-1α, thereby contributing to vascular inflammation, via multiple signaling molecules, including TLR2, PI3K/Akt/mTOR, and MAPKs.

AG490, a Jak2-specific Inhibitor, Induces Osteoclast Survival by Activating the Akt and ERK Signaling Pathways

  • Kwak, Han Bok;Sun, Hyun Min;Ha, Hyunil;Lee, Jong Ho;Kim, Ha Neui;Lee, Zang Hee
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.436-442
    • /
    • 2008
  • Osteoclasts are multinucleated cells with the unique ability to resorb bone. Elevated activity of these cells under pathologic conditions leads to the progression of bone erosion that occurs in osteoporosis, periodontal disease, and rheumatoid arthritis. Thus, the regulation of osteoclast apoptosis is important for bone homeostasis. In this study, we examined the effects of the Janus tyrosine kinase 2 specific inhibitor AG490 on osteoclast apoptosis. We found that AG490 greatly inhibited osteoclast apoptosis. AG490 stimulated the phosphorylation of Akt and ERK. Adenovirus-mediated expression of dominant negative (DN)-Akt and DN-Ras in osteoclasts inhibited the survival of osteoclasts despite the presence of AG490. Cytochrome c release during osteoclast apoptosis was inhibited by AG490 treatment, but this effect was inhibited in the presence of LY294002 or U0126. AG490 suppressed the pro-apoptotic proteins Bad and Bim, which was inhibited in osteoclasts infected with DN-Akt and DN-Ras adenovirus. In addition, constitutively active MEK and myristoylated-Akt adenovirus suppressed the cleavage of pro-caspase-9 and -3 and inhibited osteoclast apoptosis induced by etoposide. Taken together, our results suggest that AG490 inhibited cytochrome c release into the cytosol at least partly by inhibiting the pro-apoptotic proteins Bad and Bim, which in turn suppressed caspase-9 and -3 activation, thereby inhibiting osteoclast apoptosis.

Suppressive Effect of Arazyme on Neutrophil Apoptosis in Normal and Allergic Subjects

  • Kim, In Sik;Lee, Ji-Sook
    • Biomedical Science Letters
    • /
    • v.20 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • Arazyme is a metalloprotease secreted by Aranicola proteolyticus that was previously shown to suppress cytokine expression of keratinocytes and endothelial cells and inhibit histopathological features in an atopic dermatitis-like animal model. However, the regulatory effects of arazyme in other allergic diseases have yet to be elucidated. In this study, we investigated whether arazyme is effective against neutrophil apoptosis in allergic diseases such as allergic rhinitis and asthma. Arazyme inhibited neutrophil apoptosis of normal subjects in a dose-dependent manner. However, the antiapoptotic effect of arazyme was reversed by LY294002, an inhibitor of PI3K, AKTi, an inhibitor of Akt, PD98059, an inhibitor of MEK, and BAY-11-7085, an inhibitor of NF-${\kappa}B$. Arazyme induced activation of NF-${\kappa}B$ via PI3K/Akt/ERK pathway. The anti-apoptotic effect of arazyme is associated with inhibition of cleavage of caspase 3 and caspase 9. Arazyme inhibited constitutive apoptosis of neutrophil in a dose-dependent manner in allergic subjects, and its mechanism was shown to be associated with PI3K/Akt/ERK/NF-${\kappa}B$. The results presented here improve our understanding of neutrophil apoptosis regulation and will facilitate development of drugs for treatment of allergic diseases.

Induction of Apoptosis by Aqueous Extract of Cordyceps militaris Through Activation of Caspases and Inactivation of Akt in Human Breast Cancer MDA-MB-231 Cells

  • Jin, Cheng-Yun;Kim, Gi-Young;Choi, Yung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1997-2003
    • /
    • 2008
  • Cordyceps militaris is well known as a traditional medicinal mushroom and has been shown to exhibit immunostimulatory and anticancer activities. In this study, we investigated the apoptosis induced by an aqueous extract of C. militaris (AECM) via the activation of caspases and altered mitochondrial membrane permeability in human breast cancer MDA-MB-231 cells. Exposure to AECM induced apoptosis, as demonstrated by a quantitative analysis of nuclear morphological change and a flow cytometric analysis. AECM increased hyperpolarization of mitochondrial membrane potential and promoted the activation of caspases. Both the cytotoxic effect and apoptotic characteristics induced by AECM treatment were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrates the important role of caspase-3 in the observed cytotoxic effect. AECM-induced apoptosis was associated with the inhibition of Akt activation in a time-dependent manner, and pretreatment with LY294002, a PI3K/Akt inhibitor, significantly increased AECM-induced apoptosis. The results indicated that AECM-induced apoptosis may relate to the activation of caspase-3 and mitochondria dysfunctions that correlate with the inactivation of Akt.

Inhibitory Effects of Dithiolo-thione Derivative SWU-20009 on Akt Activity (Dithiolo-thione 계열 유도체 SWU-20009의 Akt활성 저해 효과)

  • 고종희;연승우;이홍섭;김태용;노동윤;신경순;홍순광;강상순
    • YAKHAK HOEJI
    • /
    • v.48 no.2
    • /
    • pp.105-110
    • /
    • 2004
  • Akt (or Protein Kinase B; PKB) is a serine/threonine kinase and is activated by phosphoinositide 3-kinase (PI3K) pathway. Recent evidence indicates that the abnormal activities or expression of Akt is closely associated with cancer, diabetes and neuro-degenerative diseases. These findings mean that Akt is likely to be a new therapeutic target for the treatment of disease. Here, we screened the effects of dithiolo-dithione derivatives such as SWU-20004, SWU-20009 and SWU-20025 on Akt activities. Among these compounds, only SWU-20009 (2-Thioxo-[1,3]dithiolo[4,5- $\beta$][1,4]dithiine-5,6-dicarboxylic acid dimethyl ester) inhibited the growth of KATOIII cell at micromolar range of concentration. Further investigation also revealed that SWU-20009 inhibited cellular Akt activity and induced apoptotic cell death.