• Title/Summary/Keyword: Airway hypersecretion

Search Result 43, Processing Time 0.022 seconds

Effects of Haengso-tang and Chwiyeon-tang on Expression of Respiratory Mucin Gene and Secretion of Airway Mucus (행소탕(杏蘇湯) 및 취연탕(取淵湯)이 호흡기 뮤신 유전자의 발현과 점액분비에 미치는 영향)

  • Kang, Won-Je;Seo, Un-Kyo
    • The Journal of Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.76-87
    • /
    • 2008
  • Objectives: In this study, the author investigated whether Haengso-tang (HST) and Chwiyeon-tang (CHT) affect both in vitro mucin secretion and MUC5AC gene expression in airway epithelial cells and in vivo mucin secretion from animal model for airway mucus hypersecretion. Materials and Methods: Confluent HTSE cells (non-labeled) were chased for 30 min in the presence of HST and CHT to assess the effects of the agents on mucin secretion by enzyme-linked immunosorbent assay (ELISA), with removal of oriental herbal medicine extract from each agent-treated sample by centrifuge microfilter. Also, the effects of the agents on TNF- or EGF-induced MUC5AC gene expression in human airway epithelial cells (NCI-H292) were investigated. The author also induced hypersecretion of airway mucus by exposure of rats to SO2 for 3 weeks. Effects of orally-administered HST and CHT during 1 week on in vivo mucin secretion from tracheal goblet cells of rats were assessed using ELISA. Results: (1) HST significantly decreased in vitro mucin secretion from cultured HTSE cells. However, CHT did not affect in vitro mucin secretion from HTSE cells; (2) CHT significantly inhibited the expression levels of EGF- or TNF-alpha-induced MUC5AC gene in NCI-H292 cells. However, HST did not affect the expression levels of EGF- or TNF-alpha-induced MUC5AC gene in NCI-H292 cells; (3) CHT significantly inhibited hypersecretion of in vivo mucin. However, HST did not affect hypersecretion of in vivo mucin. Conclusion: These results suggest that CHT can not only affect the secretion of mucin but also the expression of the mucin gene and could be helpful for treating pulmonary disease caused by secretion of mucin.

  • PDF

Pyunkang-hwan (Pyunkang-tang) Regulates Hypersecretion of Pulmonary Mucin from Rats with Sulfur Dioxide-Induced Bronchitis and Production and Gene Expression of MUC5AC Mucin from Human Airway Epithelial Cells

  • Seo, Hyo-Seok;Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • Pyunkang-hwan (Pyunkang-tang) extract (PGT) is a traditional folk medicine for controlling diverse pulmonary diseases including bronchitis, tonsiltis and pneumonitis. We investigated whether PGT significantly affects secretion, production and gene expression of airway mucin using in vivo and in vitro experimental models reflecting the hypersecretion and/or hyperproduction of mucus observed in inflammatory pulmonary diseases. For in vivo experiment, effect of PGT was checked on hypersecretion of pulmonary mucin in sulfur dioxide-induced bronchitis in rats. For in vitro experiment, confluent NCI-H292 cells were pretreated with PGT for 30 min and then stimulated with EGF (epidermal growth factor), PMA (phorbol 12-myristate 13-acetate) or TNF-${\alpha}$ (tumor necrosis factor-${\alpha}$) for 24 h. The MUC5AC mucin gene expression and mucin protein production were measured by RT-PCR and ELISA. The results were as follows: (1) PGT inhibited the expression of MUC5AC mucin gene induced by EGF, PMA or TNF-${\alpha}$ from NCI-H292 cells, respectively; (2) PGT also inhibited the production of MUC5AC mucin protein induced by the same inducers from NCI-H292 cells, respectively; (3) PGT inhibited secretion of mucin in sulfur dioxide-induced bronchitis rat model. This result suggests that PGT can regulate secretion, production and gene expression of airway mucin.

A Case of Mucus Plug Impaction resulted in Bronchial Obstruction (광범위 기관지 폐쇄를 유발한 점액전 1례)

  • 고중화;전영명;김휘준
    • Korean Journal of Bronchoesophagology
    • /
    • v.3 no.2
    • /
    • pp.313-317
    • /
    • 1997
  • Airway mucus provides the protective functions such as lubrication, barrier, disposal of trapped materials, and humidification. In the normal state, the mucus do not interfere with Bas transport and the other vital functions of lung. In diseases such as asthma, bronchitis, and cystic fibrosis, the mucus hypersecretion was physiologically developed in the response of multiple neurohumoral mechanism system. And regardless of the mechanism, many clinical sequelae result from mucus hypersecretion: atelectasis, infection, increased airway resistance, increased work of breathing, increased cough with its resultant complication. And the condensation of mucus tv mucus hypersecretion can make the mucus plug by which bronchial obstruction is developed. We have experienced a 7 Pear-old male patient with recurrent pneumonic symtom, which the bronchial obstruction was developed by the impacted mucus plug on the bronchoscopic finding. We report this case with the review of literature.

  • PDF

Effects of Several Oriental Medicines on Protein Kinase C Activator-Induced Production and Gene Expression of Airway Mucin and Animal Model for Airway Mucus Hypersecretion (단백질인산화효소 C 활성화제로 유도된 기도 뮤신 생성 및 유전자 발현과 점액 과분비 모델동물에 대한 수종(數種) 방제의 영향)

  • Lim, Do-Hee;Park, Yang-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1500-1508
    • /
    • 2008
  • The author investigated whether Chwiyeon-tang(PC), Haengso-tang(PH), Jawanchihyo-san(PJ) and Gamisocheongryong-tang(PS) significantly affect both PMA-induced mucin production and MUC5AC gene expression in airway epithelial cells and sulfur-dioxide-induced airway goblet cell hyperplasia and mucus hypersecretion animal model using rat. Possible cytotoxicity of each herbal medicine was assessed by measuring the survival and proliferation rate of NCI-H292 cells. Confluent NCI-H292 cells were pretreated for 30 min in the presence of PC, PH, PJ and PS, respectively, and treated with PMA(10 $ng/m{\ell}$), to assess the effect of each herbal medicine on PMA-induced mucin production by enzyme-linked immunosorbent assay(ELISA). Effects of each herbal medicine on PMA-induced MUC5AC gene expression from the same cells were investigated. Also, hypersecretion of airway mucus and goblet cell hyperplasia were induced by exposure of rats to $SO_2$ during 3 weeks. Effects of orally-administered PC, PH, PJ and PS during 1 week on intraepithelial mucosubstances and hyperplasia of goblet cells were examined using histological analysis after staining the epithelial tissue with PAS-alcian blue. (1) PC, PJ, PS and PH did not show significant effects on the survival and proliferation of NCI-H292 cells ; (2) PC, PJ and PS significantly decreased PMA-induced mucin production from NCI-H292 cells ; (3) PC, PJ and PS significantly inhibit the expression levels of PMA-induced MUC5AC gene in NCI-H292 cells ; (4) Among PC, PJ, PS and PH, only PS decreased $SO_2$-induced hyperplasia of airway goblet cells and intraepithelial mucosubstances. This result suggests that PC, PJ and PS can not only affect the production of mucin but also affect the expression of mucin gene and this can explain, at least in part, the traditional use of PC, PJ and PS for controlling airway diseases showing hypersecretion of mucus in oriental medicine.

Effect of Piryongbanggamgil-tang on Airway Mucin Secretion, Production, Gene Expression and Hypersecretion of Mucus (필용방감길탕이 기도 뮤신의 분비, 생성, 유전자 발현 및 점액 과다 분비에 미치는 영향)

  • Kim, Yoon Young;Min, Sang Yeon;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.56-71
    • /
    • 2014
  • Objectives In this study, the author tried to investigate whether piryongbang-gamgil-tang (PGGT) significantly affect in vitro airway mucin secretion, PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production / gene expression from human airway epithelial cells and increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats. Materials and Methods For in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of PGGT to assess the effect of PGGT on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effect of PGGT on PMA- or EGFor TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of PGGT and treated with PMA (10 ng/ml) or EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24 hrs, to assess both effect of PGGT on PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production by ELISA and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). For in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to $SO_2$ during 3 weeks. Effect of orally-administered PGGT during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assesed by using histopathological analysis after staining the epithelial tissue with alcian blue. Possible cytotoxicities of PGGT in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of PGGT were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering PGGT orally. Results (1) PGGT did not affect in vitro mucin secretion from cultured RTSE cells. (2) PGGT significantly inhibited PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. (3) PGGT decreased the amount of intraepithelial mucosubstances and showed the tendency of expectorating airway mucus already produced. (4) PGGT increased LDH release from RTSE cells. However, PGGT did not show in vivo liver and kidney toxicities and cytotoxicity to NCI-H292 cells. Conclusion The result from this study suggests that PGGT can regulate the production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and do not show in vivo toxicity to liver and kidney functions after oral administration. Effect of PGGT with their components should be further studied using animal experimental models that reflect the diverse pathophysiology of respiratory diseases through future investigations.

Effects of Seonbangpaedoktang on secretion of airway mucin and contractility of tracheal smooth muscle (선방패독탕(仙方敗毒湯)이 호흡기 뮤신 분비 및 기관 평활근 긴장도에 미치는 영향)

  • Han, Jae-Kyung;Kim, Yun-Hee;Song, Hyun-Jee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.139-154
    • /
    • 2007
  • Objectives : The author intended to investigate Seonbangpaedoktang (SBPT) significantly affect in vivo and in vitro mucin secretion from airway epithelial cells. Methods : In vivo experiment, the author induced hypersecretion of airway mucin, hyperplasia of tracheal goblet cells and the increase in intraepithelial mucosubstances. Effects of orally-administered SBPT during 1 week on in vivo mucin secretion and hyperplasia of tracheal goblet cells were assessed. For in vitro experiment, confluent hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled and chased in the presence of SBPT to assess the effect of the agent on 3H-mucin secretion. Total elution profiles of control spent media and treatment sample through Sepharose CL-4B column were analysed. Possible cytotoxicity of the agent was assessed by measuring LDH release. Also, the effect of SBPT on contractility of isolated tracheal smooth muscle was investigated. Results : SBPT inhibited hypersecretion of in vivo mucin and inhibited the increase of number of goblet cells ; SBPT did not affect in vitro mucin secretion and the secretion of the other releasable glycoproteins with less molecular weight than mucin from cultured HTSE cells, without significant effect on LDH release; SBPT did not affect Ach-induced contraction of isolated tracheal smooth muscle. Conclusions : SBPT can inihibit hypersecretion of in vivo mucin and the author suggest that the effect SBPT with their components should investigate further.

  • PDF

Recent Advances in the Development of Novel Drug Candidates for Regulating the Secretion of Pulmonary Mucus

  • Li, Xin;Jin, Fengri;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.293-301
    • /
    • 2020
  • Hypersecretion of pulmonary mucus is a major pathophysiological feature in allergic and inflammatory respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD). Overproduction and/or oversecretion of mucus cause the airway obstruction and the colonization of pathogenic microbes. Developing a novel pharmacological agent to regulate the production and/or secretion of pulmonary mucus can be a useful strategy for the effective management of pathologic hypersecretion of mucus observed in COPD and asthma. Thus, in the present review, we tried to give an overview of the conventional pharmacotherapy for mucus-hypersecretory diseases and recent research results on searching for the novel candidate agents for controlling of pulmonary mucus hypersecretion, aiming to shed light on the potential efficacious pharmacotherapy of mucus-hypersecretory diseases.

Effect of Haepyoijin-tang on Airway Mucin Secretion, Production, Gene Expression and Hypersecretion of Mucus (해표이진탕이 기도 뮤신의 분비, 생성 및 유전자 발현에 미치는 영향)

  • Suk, Yun Hee;Min, Sang Yeon;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.65-79
    • /
    • 2015
  • Objectives : In this study, effects of haepyoijintang (HIJ) on the increase in airway epithelial mucosubstances of rats and ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells were investigated. Methods : Hypersecretion of airway mucus was induced by exposure of rats to $SO_2$ during 3 weeks. Effect of orally-administered HIJ during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats was evaluated using histopathological analysis after staining the epithelial tissue with PAS-alcian blue. Possible cytotoxicity of HIJ was evaluated by examining the potential damage of kidney and liver functions by measuring serum GOT/GPT activities and serum BUN and creatinine concentrations of rats and the body weight gain during experiment, after administering HIJ orally. At the same time, the effect of HIJ on ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of HIJ and treated with ATP ($200{\mu}M$), PMA (10 ng/ml), EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24 hrs, to evaluate the effect of HIJ both on ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production using enzyme-linked immunosorbent assay (ELISA) and on gene expression by the same inducers using reverse transcription-polymerase chain reaction (RT-PCR). Results : (1) HIJ decreased the amount of intraepithelial mucosubstances of trachea of rats. (2) HIJ did not show renal and hepatic toxicities and did not affect body weight gain of rats during experiment. (3) HIJ significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions from NCI-H292 cells. (4) HIJ significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin gene expression from NCI-H292 cells. Conclusions : The result from the present study suggests that HIJ might control the production and gene expression of airway mucin observed in various respiratory diseases accompanied by mucus hypersecretion and do not show in vivo toxicity to liver and kidney functions after oral administration. Effect of HIJ with their diverse components should be further investigated using animal experimental models that can reflect the pathophysiology of airway diseases through future studies.

Effects of Gagam-jeonggitang, Gami-hwajeongjeon and Gami-tonggyutang on secretion of airway mucus In Vitro and In Vivo (가감정기탕(加減正氣湯), 가미화정전(加味和正煎), 가미통규탕(加味通竅湯)이 기도점액 분비에 미치는 영향)

  • Han, Jae-Kyung;Kim, Yun-Hee;Chae, Ho-Youn
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.117-137
    • /
    • 2007
  • Objectives : In the present study, the author intended to investigate Gagam-jeonggitang(GJT), Gami-hwajeongjeon(GHJ) and Gami-tonggyutang(GTT) significantly affect in vivo and in vitro mucin secretion from airway epithelial cells. Methods : In vivo experiment, the author induced hypersecretion of airway mucin, hyperplasia of tracheal goblet cells and the increase in intraepithelial mucosubstances by exposing rats to SO2 during 3 weeks. Effects of orally-administered GJT, GHJ and GTT during 1 week on in vivo mucin secretion and hyperplasia of tracheal goblet cells were assesed using ELISA and staining goblet cells with alcian blue. For in vitro experiment, confluent HTSE cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of each agent to assess the effects of each agent on 3H-mucin secretion. Possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase release. Also, the effects of each agent on contractility of isolated tracheal smooth muscle and effects of each agent on MUC5AC gene expression in cultured HTSE cells were investigated. Results : GJT, GHJ and GTI inhibited hypersecretion of in vivo mucin: GJT and GHJ inhibited the increase of number of goblet cells. However, GTT did not affect the increase of number of goblet cells; GJT and GTT significantly increased mucin secretion from cultured HTSE cells, without significant cytotoxicity. GHJ increased mucin secretion and showed mild cytotoxicity at the highest concentration: GJT, GHJ and GTT chiefly affected the 'mucin' secretion; GJT, GHJ and GTT did not affect Ach-induced contraction of isolated tracheal smooth muscle; GTT did not significantly affect the expression levels of MUC5AC gene. However, GJT significantly. inhibit the expression levels of MUC5AC gene and GHJ significantly increased the expression levels of MUC5AC gene. These results suggest that GJT, GHJ and GTI can increase mucin secretion during short-term treatment(in vitro), whereas it can inihibit hypersecretion of mucin during long-term treatment(in vivo) and GJT and GHJ can not only affect the secretion of mucin but also affect the expression of mucin gene. Conclusions : The author suggests that the effects GJT, GHJ and GTT with their components should be further investigated and it is valuable to find, from oriental medical prescriptions, novel agents which might regulate hypersecretion of mucin from airway epithelial cells.

  • PDF

Effect of Wood Vinegar Produced from Morus alba on Hypersecretion of Airway Mucus (상지(桑枝) 목초액이 호흡기 객담 과다분비에 미치는 영향)

  • Kim, Ho;Jung, Hye-Mi;Kim, Sol-Li;Seo, Un-Kyo
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.650-666
    • /
    • 2010
  • Objectives : In this study, the author tried to investigate whether wood vinegar produced from Morus alba (MA) significantly affects the increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats, and in vitro airway mucin secretion and PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production / gene expression from human airway epithelial cells. Materials and Methods : For the in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to SO2 over 3 weeks. Effect of orally-administered MA over 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assessed using histopathological analysis after staining the epithelial tissue with alcian blue. For the in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of MA to assess the effect of MA on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of MA and treated with PMA (10 ng/ml), EGF (25 ng/ml) or TNF-alpha (0.2 nm) for 24 hrs, to assess both effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production by enzyme-linked immunosorbent assay (ELISA) and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). Possible cytotoxicities of MA in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of MA were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering MA orally. Results : 1. MA decreased the amount of intraepithelial mucosubstances of rats exposed to sulfur dioxide inhalationally. 2. MA decreased in vitro mucin secretion from cultured RTSE cells. 3. MA significantly inhibited PMA-, EGF-, and TNF-alpha-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. 4. MA did not show either in vitro or in vivo hepatic or renal toxicities. Conclusion : The results from this study suggests that MA can regulate the secretion, production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and does not show in vivo toxicity to liver and kidney functions after oral administration. Effects of MA should be further studied using animal experimental models that simulate the diverse pathophysiology of respiratory diseases via future research.