• 제목/요약/키워드: Airplane

검색결과 475건 처리시간 0.029초

소형비행기 조종실 평가에 대한 인증방법 연구 (Certification on cockpit evaluation for small airplane)

  • 김필수;정봉구
    • 항공우주시스템공학회지
    • /
    • 제6권2호
    • /
    • pp.1-6
    • /
    • 2012
  • On this study, as a Human Factor(HF)'s point of view, typical PVI(Pilot Vehicle Interface) evaluation for small airplane cockpit design, PVI evaluation items and procedures to show compliance to KAS Part 23 "Airworthiness Standards : Normal, Utility, Acrobatic, And Commuter Category Airplanes" are introduced and reviewed. This study is based on the experience of Korean small civil airplane development and certification program.

상용 여객기의 유동 및 공력 특성 해석 (Flow and Aerodynamic Characteristics Analyses of A Commercial Passenger Airplane)

  • 김양균;김성초;김정수;이기만;진학수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2857-2861
    • /
    • 2007
  • Flow and aerodynamic characteristics were analyzed numerically for a commercial passenger airplane, Boeing 747-400, flying in the cruising condition. The model geometry with 100:1 in scale was obtained by the photo scanning measurement with the maximum error of 1.4% comparing with the real airplane dimension. The three-dimensional inviscid steady compressible governing equations were solved by the finite volume method in the unstructured grid system. The convective terms were treated by the Crank-Nicholson and first-order upwind schemes. In the computational results, the strong wing-tip vortices were clearly observed and the pressure contours on the airplane surface were suggested. The lift and drag forces in the wing with engines increase by 1.49% and 3.9%, respectively compared with the case without engines. The aerodynamic forces were estimated quantitatively for each element which consists of the airplane.

  • PDF

The feasible constant speed helical trajectories for propeller driven airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.371-399
    • /
    • 2017
  • The motion of propeller driven airplanes, flying at constant speed on ascending or descending helical trajectories is analyzed. The dynamical abilities of the airplane are shown to result in restrictions on the ranges of the geometrical parameters of the helical path. The physical quantities taken into account are the variation of air density with altitude, the airplane mass change due to fuel consumption, its load factor, its lift coefficient, and the thrust its engine can produce. Formulas are provided for determining all the airplane dynamical parameters on the trajectory. A procedure is proposed for the construction of tables from which the flyability of trajectories at a given angle of inclination and radius can be read, with the corresponding minimum and maximum speeds allowed, the final altitude reached and the amount of fuel burned. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and the C-130 Hercules.

항공기 ELT 성능 향상 방안 연구

  • 안철용;양기산;유병욱
    • 한국항공운항학회:학술대회논문집
    • /
    • 한국항공운항학회 2015년도 추계학술대회
    • /
    • pp.88-91
    • /
    • 2015
  • MISSING Malaysia Airlines flight MH370 has not been discovered and unknown whether it crashed on the ground or under the sea. There are a couple of emergency equipment in the airplane not only outside of airplane but inside airplane such as ELT(Emergency Locator Transmitter). Since the ELT developed, it is required to be installed in the airplane for regulation requirement. However, despite of its important function, it is not working properly or shows wide search range for rescue during the crash or ditching on the water. I would like to propose how to over come the up-to-dated position data just before the event. Connecting with ADIRS or GPS which is installed internal airplane system will help to reduce the rescue time for survival passenger.

  • PDF

항공기 피치 조종력 비행시험 (Flight Test of Pitch Control Force for an Airplane)

  • 이정훈
    • 항공우주시스템공학회지
    • /
    • 제8권3호
    • /
    • pp.20-26
    • /
    • 2014
  • This paper presents the procedures and the results of the pitch control force via flight test for a light airplane in order to make out the stability of the aircraft and the compliance with concerned regulation. The flight test procedures were determined in order to obtain the aircraft type certification. The instrumentation equipments including airspeed indicator, accelerometer, and pitch control force measurement tools are used to perform the flight test. For the flight test, the airspeed and the pitch control force with related normal acceleration are measured sustaining turn flight with bank angle derived from trim speed. The flight test results showed that the handling qualities of the airplane are complied with the KAS-23, the regulation of the Korean government for the light airplane type certification.

AHP를 이용한 경항공기 가종선정표의 개발 (Development of Checklist for the Selecting Optimum Light Airplane by the AHP)

  • 은희봉;권보헌
    • 한국항공운항학회지
    • /
    • 제11권2호
    • /
    • pp.43-58
    • /
    • 2003
  • To decide the type of airplane to purchase in air service agencies is a typical matter of multi-criteria decision making process. The selection of airplane type is very important because it has great impact on the budget and management of air service agency, once the decision has been made. AHP is being recognized as one of many effective methods of multi-criteria decision making processes. In this study, checklist for the selecting optimum type of light airplane to be purchased is developed by the AHP.

  • PDF

A method to analyze the flyability of airplane trajectories with specified engine power

  • Gilles Labonte;Vincent Roberge;Mohammed Tarbouchi
    • Advances in aircraft and spacecraft science
    • /
    • 제10권5호
    • /
    • pp.473-494
    • /
    • 2023
  • This article introduces a formalism for the analysis of airplane trajectories on which the motion is determined by specifying the power of the engines. It explains a procedure to solve the equations of motion to obtain the value of the relevant flight parameters. It then enumerates the constraints that the dynamical abilities of the airplane impose on the amount of fuel used, the speed, the load factor, the lift coefficient, the positivity and upper boundedness of the power available. Examples of analysis are provided to illustrate the method proposed, with rectilinear and circular trajectories. Two very different types of airplanes are used in the examples: a Silver Fox-like small UAV and a common Cessna 182 Skylane.

틸트로터 항공기의 경로점 추종 비행유도제어 알고리즘 설계 : 헬리콥터 비행모드 (Guidance and Control Algorithm for Waypoint Following of Tilt-Rotor Airplane in Helicopter Flight Mode)

  • 하철근;윤한수
    • 제어로봇시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.207-213
    • /
    • 2005
  • This paper deals with an autonomous flight guidance and control algorithm design for TR301 tilt-rotor airplane under development by Korea Aerospace Research Institute for simulation purpose. The objective of this study is to design autonomous flight algorithm in which the tilt-rotor airplane should follow the given waypoints precisely. The approach to this objective in this study is that, first of all, model-based inversion is applied to the highly nonlinear tilt-rotor dynamics, where the tilt-rotor airplane is assumed to fly at helicopter flight mode(nacelle angle=0 deg), and then the control algorithm, based on classical control, is designed to satisfy overall system stabilization and precise waypoint following performance. Especially, model uncertainties due to the tiltrotor model itself and inversion process are adaptively compensated in a simple neural network(Sigma-Phi NN) for performance robustness. The designed algorithm is evaluated in the tilt-rotor nonlinear airplane in helicopter flight mode to analyze the following performance for given waypoints. The simulation results show that the waypoint following responses for this algorithm are satisfactory, and control input responses are within control limits without saturation.

부활호 복원 설계, 제작 및 성능 연구 (Design, manufacturing and performance test of restorated airplane of Buhwal)

  • 박찬우;김병수;조태환;조환기;옥주선
    • 한국항공우주학회지
    • /
    • 제41권7호
    • /
    • pp.552-560
    • /
    • 2013
  • 부활호는 한국최초로 설계 제작된 국산 경비행기이며 복원된 부활호는 2004년 공군이 복원한 부활호의 기본 형상을 기준으로 하되, 날개는 알루미늄합금 재질로 적용하고, 전자식계기를 사용하며, 비행 안전성 확보를 위해 비행기용 낙하산과 소형블랙박스를 장착하는 등 최신 기술의 적용과 성능 개량을 병행하였다. 본 논문에서는 복원된 부활호의 주요 설계 변경 내역을 소개하고 구조, 공력 및 안정성 해석 결과와 풍동 시험, 비행시험을 통하여 입증된 성능향상 내용을 소개한다. 본 연구 결과는 향후 국산 개발 경비행기 연구에 큰 도움이 될 것으로 생각된다.

Determination of taxiing resistances for transport category airplane tractive propulsion

  • Daidzic, Nihad E.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.651-677
    • /
    • 2017
  • For the past ten years' efforts have been made to introduce environmentally-friendly "green" electric-taxi and maneuvering airplane systems. The stated purpose of e-taxi systems is to reduce the taxiing fuel expenses, expedite pushback procedures, reduce gate congestion, reduce ground crew involvement, and reduce noise and air pollution levels at large airports. Airplane-based autonomous traction electric motors receive power from airplane's APU(s) possibly supplemented by onboard batteries. Using additional battery energy storages ads significant inert weight. Systems utilizing nose-gear traction alone are often traction-limited posing serious dispatch problems that could disrupt airport operations. Existing APU capacities are insufficient to deliver power for tractive taxiing while also providing for power off-takes. In order to perform comparative and objective analysis of taxi tractive requirements a "standard" taxiing cycle has been proposed. An analysis of reasonably expected tractive resistances has to account for steepest taxiway and runway slopes, taxiing into strong headwind, minimum required coasting speeds, and minimum acceptable acceleration requirements due to runway incursions issues. A mathematical model of tractive resistances was developed and was tested using six different production airplanes all at the maximum taxi/ramp weights. The model estimates the tractive force, energy, average and peak power requirements. It has been estimated that required maximum net tractive force should be 10% to 15% of the taxi weight for safe and expeditious airport movements. Hence, airplanes can be dispatched to move independently if the operational tractive taxi coefficient is 0.1 or higher.