• Title/Summary/Keyword: Airfoil for Wind Turbine

Search Result 84, Processing Time 0.028 seconds

The Research of Airfoil Development for Wind Turbine Blade (풍력 블레이드용 익형 개발에 대한 연구)

  • Kim, Tae-Woo;Park, Sang-Gyoo;Kim, Jin-Bum;Kweon, Ki-Yeoung;Oh, Si-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.512-515
    • /
    • 2009
  • This research describes on airfoil shape design, crucial to core technique and algorithm optimization for the wind turbine blade development. We grasped the parameter to define the airfoil shape in the wind turbine blade and aircraft, and the important performance characteristic of the airfoil. The airfoil shape function is selected by studying which is suitable for wind turbine blade airfoil development. The selected method is verified by to compare the generated airfoil shape with base airfoil. The new airfoils were created by the selecting shape function based on the well-known airfoil for wind turbine blades. In addition, we performed aerodynamic analysis about the generated airfoils by XFOIL and estimated the point of difference in the airfoil shape parameter using the aerodynamic performance results which is compared with basic airfoil. This result data applies to the fundamental research for a wind turbine blade optimization design and accomplished the aerodynamic analysis manual.

  • PDF

Study for Dynamic Stall Characteristics of Vertical Axis Wind Turbine Airfoil (수직형 풍력터빈 익형의 동특성 분석)

  • Kim, Cheol-Wan;Cho, Tae-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.478-481
    • /
    • 2009
  • As a first step for aerodynamic analysis of vertical axis wind turbine, dynamic stall characteristics of airfoil was investigated. Dynamic stall of wind turbine airfoil is caused by severe variation of angle of attack and relative velocity of flow around airfoil. Angle of attack and relative velocity can be expressed with tip speed ratio. Variation of angle of attack is strongly dependent on the tip speed ratio. For tip speed ratio, 1.4 and free stream velocity, 15m/s, dynamic stall characteristics of wind turbine airfoil is compared with those of oscillating airfoil having same angle of attack variation.

  • PDF

Design of Low Noise Airfoil for Use on Small Wind Turbines (소형 풍력발전기 소음 저감을 위한 익형 설계 연구)

  • Kim, Tae-Hyung;Lee, Seung-Min;Kim, Ho-Geon;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.465-465
    • /
    • 2009
  • Wind power is one of the most reliable renewable energy sources and the installed wind turbine capacities are increasing radically every year. Although wind power has been favored by the public in general, the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased. Low noise wind turbine design is becoming more important as noise is spreading more adverse effect of wind turbine to public. This paper demonstrates the design of 10 kW class wind turbines, each of three blades, a rotor diameter 6.4m, a rated rotating speed 200 rpm and a rated wind speed 10 m/s. The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade has been known as trailing edge noise from the outer 25% of the blade. Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at $1.02{\times}10^6$ with a lift performance, which is resistant to surface contamination and turbulence intensity. The objective in the low design process is to reduce noise emission, while sustaining high aerodynamic efficiency. Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al. and Lowson associated with typical wind turbine operation conditions. During the airfoil redesign process, the aerodynamic performance is analyzed to minimize the wind turbine power loss. The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis. The new optimized airfoil clearly indicates reduction of total SPL about 3 dB and higher aerodynamic performance.

  • PDF

Design and analysis fo wind turbine airfoils (풍력블레이드용 에어포일세트의 설계 및 해석)

  • Shin, Hyung-Ki;Kim, Seok-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.362-365
    • /
    • 2007
  • In wind turbine blades, airfoils are required to have different spec when compared with airplane airfoil. Airfoils for wind turbine blade must have a high lift-to-drag ratio, moderate to high lift and especially low roughness sensitivity. Also an operation Re. No.s are lower than conventional airplane airfoils. At mid-span and inboard region, structural problems have to be considered. Especially, for stall regulated type, moderate stall behavior is essential part of design. For these reasons, airfoil design for HAWT blade is essential part of blade design. In this paper, root airfoil and tip airfoil are discussed. For a root region, 24% thickness airfoil is designed and for a top region, 12% thickness ratio is done. A inverse design method and panel method are used for rapid airfoil design. In this paper, a design method, features of airfoil shape and characteristics are discussed.

  • PDF

DESCRIPTIONS OF ATTACK ANGLE AND IDEAL LIFT COEFFICIENT FOR VARIOUS AIRFOIL PROFILES IN WIND TURBINE BLADE

  • JAEGWI GO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.75-86
    • /
    • 2023
  • The angle of attack is highly sensitive to pitch point in the airfoil shape and the decline of pitch point value induces smaller angle of attack, which implies that airfoil profile possessing closer pitch point to the airfoil tip reacts more sensitively to upcoming wind. The method of conformal transformation functions is employed for airfoil profiles and airfoil surfaces are expressed with a trigonometric series form. Attack angle and ideal lift coefficient distributions are investigated for various airfoil profiles in wind turbine blade regarding conformal transformation and pitch point. The conformed angle function representing the surface angle of airfoil shape generates various attack angle distributions depending on the choice of surface angle function. Moreover, ideal attack angle and ideal lift coefficient are susceptible to the choice of airfoil profiles and uniform loading area. High ideal attack angle signifies high pliability to upcoming wind, and high ideal lift coefficient involves high possibility to generate larger electric energy. According to results obtained pitch point, airfoil shape, uniform loading area, and the conformed airfoil surface angle function are crucial factors in the determination of angle of attack.

Medium.Large Horizontal Axis Wind Turbine Noise Analysis Considering Blade Passing Frequency Noise and Retarded Time (블레이드 통과 주파수 소음과 지연시간을 고려한 중.대형 수평축 풍력발전기의 공력소음해석)

  • Kim, Hyun-Jung;Kim, Ho-Geon;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1490-1493
    • /
    • 2007
  • Aerodynamic noise generated from wind turbines is predicted by it's classified source mechanisms using computational method. BPF noise according to the blade passing motion, is modelled on monopole and dipole sources. They are predicted by Farassat 1A equation. Airfoil self noise and turbulence ingestion noise are modelled upon quadrupole sources and are predicted by semi-empirical formulas composed on the groundwork of Brooks et al. and Lowson. Retarded time is considered, not only in low frequency noise prediction but also in turbulence ingestion noise and airfoil self noise prediction. Wind turbine noise emission of a 3MW wind turbine and a 600 kW wind turbine, standing for large and middle sized wind turbines, is analyzed.

  • PDF

Aerodynamic Characteristics of the Original Airfoil KA2 for the Application of Wind Turbine Blade (풍력 블레이드 적용을 위한 고유익형 KA2의 공력특성)

  • Woo, Young-Jin;Kang, Deok-Hun;Lee, Jang-Ho
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • The new aerofoil, KA2 was designed to apply to the wind turbine blade. For the aerofoil, numerical analysis was performed to review aerodynamic characteristics like lift and drag coefficient. And they are verified with test data using the digital wind tunnel and test samples from 3D printer. The digital wind tunnel was developed to test wing in the small laboratory, and verified with test of NACA0012 airfoil. KA2 aerofoil is asymmetric, and has the thickness ratio of 14%, and 12 degree of AOA at the maximum lift coefficient of 1.3. In this paper, aerodynamic characteristics from numerical and test approaches will be proposed with AOA in detail. Therefore, this aerofoil will be used for the design of wind turbine blade.

Conceptual Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine (풍력터빈 성능시험을 위한 저속풍동 개념연구)

  • Kang, Seung-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.24-29
    • /
    • 2011
  • Conceptual study of an open-circuit type low-speed wind tunnel for performance test of wind turbine blade and airfoil is conducted. The tunnel is constituted of a settling chamber, a contraction, closed test section, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The contraction ratio is 9 to 1 and maximum speed in the test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine and airfoil.

Inverse Airfoil Design for Wind Turbine (역설계 기법을 이용한 풍력터빈 에어포일 형상 설계)

  • Ryu, Ki-Wahn;Park, Myoung-Ho
    • Journal of Wind Energy
    • /
    • v.4 no.2
    • /
    • pp.55-60
    • /
    • 2013
  • The mathematical implementation for inverse airfoil design of wind turbines is presented using vortex panel method based on assumptions of the two-dimensional incompressible potential flow. The vortex panel method employs linear distribution of the vortex strength to obtain the well converged solution. Stream function is adopted to get the basic formula for the inverse airfoil design, and a symmetric seed airfoil is given for initial data of the iteration approach. The final airfoil shape has been compared with the original airfoil shape for validation of the mathematical procedure.

PERFORMANCE ANALYSIS OF NREL PHASE VI WIND TURBINES UNDER VARIOUS SCALE CONDITIONS (스케일 변화에 따른 NREL PHASE VI 풍력터빈의 성능해석)

  • Park, Y.M.;Chang, B.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.155-158
    • /
    • 2006
  • In the present paper, the scale effects of two-dimensional airfoil and three-dimensional wind turbine were investigated by using FLUENT software. For two dimensional analysis, flow around S809 airfoil with various Reynolds No. and Mach No. conditions were simulated. For three dimensional analysis, scaled NREL Phase VI wind turbine models from 6% to 1,600% were simulated under the same tip speed ratio condition. Finally, aerodynamic comparisons between two-dimensional flow and three dimensional wind turbine flow are made for the feasibility study of scale effect corrections. Currently, KARI(Korea Aerospace Research Institute) is preparing for the wind tunnel test of 12% NREL Phase VI wind turbine and the performance analysis of the scaled NREL wind turbine model will be validated by the wind tunnel test.

  • PDF