• 제목/요약/키워드: Airfoil Fan

검색결과 47건 처리시간 0.026초

냉각탑용 축류팬 형상 정밀도 측정 시스템 (Surface Profile Measuring System for Axial Fan of Cooling Towers)

  • 강재관;이광일
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.151-158
    • /
    • 2005
  • An important component of a cooling tower is an axial fan, and there happens distortion in its shape which brings significant loss of efficiency. In this paper, a surface profile measuring system for large size axial fan of cooling towers is developed. A laser sensor is used as a measuring device and aluminum profiles and stepping motors are engaged into the system as frame structure and driving devices respectively. The measuring data are compared to the design data to compute the distortion of the axial fans. Two types of errors, axial and twist errors, are used to represent the precision of axial fan distortion. Genetic algorithm is used to solve the optimization problem during computing the precision. Results are displayed three dimensionally in a solid-modeler as well as 2-D drawings to help users find it with ease.

풍력터빈 성능시험을 위한 저속풍동 개념연구 (Conceptual Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine)

  • 강승희
    • 한국항공운항학회지
    • /
    • 제19권4호
    • /
    • pp.24-29
    • /
    • 2011
  • Conceptual study of an open-circuit type low-speed wind tunnel for performance test of wind turbine blade and airfoil is conducted. The tunnel is constituted of a settling chamber, a contraction, closed test section, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The contraction ratio is 9 to 1 and maximum speed in the test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine and airfoil.

익렬 분석 및 표면 돌기 형상을 이용한 냉장고 기계실 냉각용 고성능/저소음 축류팬 개발 (Development of high performance and low noise axial-flow fan for cooling machine room of refrigerator using airfoil-cascade analysis and surface ridge shape)

  • 최진호;유서윤;정철웅;김태훈;구준효
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.515-523
    • /
    • 2020
  • 본 연구의 목표는 냉장고 기계실 냉각용 축류팬을 대상으로 익렬 분석법과 표면 돌기 형상을 이용하여 유량과 소음 성능을 향상시키는 것이다. 먼저 기존 팬 시스템의 유동 및 소음 성능을 팬 성능 시험기와 무향실에서 실험적으로 평가하였다. 다음으로 전산유체역학과 Ffowcs-Williams and Hawkings(FW-H) 방정식을 연계한 수치해석을 이용하여 유량과 소음 성능을 예측하였으며 실험 결과와의 비교를 통해 그 유효성을 검증하였다. 검증된 수치해석기법을 기반으로 유량 성능을 향상시키기 위하여 기존 팬으로부터 추출된 익형들로 구성한 2차원 익렬의 유동 성능 분석을 수행하고 양항비를 최대화할 수 있는 피치각을 도출하였다. 최적 피치각이 적용된 축류팬의 수치해석을 실시하여 향상된 유량 성능을 확인하였다. 향상된 유량 성능을 바탕으로 추가적인 소음 성능을 개선하기 위해 표면 돌기 형상을 팬 압력면에 적용한 팬 날개를 도출하였으며 수치적으로 유동 소음의 저감을 확인하였다. 마지막으로 유량 및 소음 성능 개선 축류팬을 제작하여 검증 실험을 통해 유량 및 소음 성능이 향상됨을 확인하였다.

대리모델을 사용한 축류송풍기 블레이드의 형상 최적화 (Shape Optimization of Axial Flow Fan Blade Using Surrogate Model)

  • 김진혁;최재호;김광응
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2440-2443
    • /
    • 2008
  • This paper presents a three dimensional shape optimization procedure for a low-speed axial flow fan blade with a weighted average surrogate model. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations. Six variables from airfoil profile and lean are selected as design variables. 3D RANS solver is used to evaluate the objective functions of total pressure efficiency. Surrogate approximation models for optimization have been employed to find the optimal design of fan blade. A search algorithm is used to find the optimal design in the design space from the constructed surrogate models for the objective function. The total pressure efficiency is increased by 0.31% with the weighted average surrogate model.

  • PDF

축류팬에서의 광대역소음 발생에 대한 실험적 연구 (An Experimental study on the Broadband Noise Generation in Axial Flow Fan)

  • 이욱;최종수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.91-96
    • /
    • 1998
  • The broadband noise generated aerodynamically from a two-bladed axial flow fan has been measured and compared to the result of a self-noise prediction method. The prediction scheme is based on the experimental data set acquired from a series of aerodynamic and acoustic tests of two and three-dimensional airfoil blade sections. For low blade loading case the comparison showed a reasonably good agreement, but as the loading becomes larger the empirical formula overpredict the sound pressure level at high frequency range. This is probably due to the use of stationary wing data for the prediction of rotating blade case, which will be quite different in their vortex strength at the blade tip.

  • PDF

축류 송퐁기의 공력학적 설계 (Aerodynamic Design of the Axial Fan)

  • 손상범;주원구;조강래;남형백;윤인규;남임우
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.64-69
    • /
    • 1998
  • In this study, a preliminary design method of the axial fan was systematically established based on the two-dimensional cascade theory. Flow deviation, lift coefficient, distribution of velocity and pressure coefficient on blade surfaces were predicted by an inviscid theory of Martensen method, which was also applied to select an airfoil of required performance in the present design process. The aerodynamic performance of designed blades can be predicted quickly and reasonably by using the through-flow calculation method in the preliminary design process. It would be recommendable to adopt three-dimensional viscous flow calculation at the final design refinement stage.

  • PDF

축류 송풍기의 공력학적 설계 (Aerodynamic Design of the Axial Fan)

  • 손상범;주원구;조강래;남형백;윤인규;남임우
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.22-28
    • /
    • 1999
  • In this study, a preliminary design method of the axial fan was systematically established based on the two-dimensional cascade theory. Flow deviation, lift coefficient, distribution of velocity and pressure coefficient on blade surfaces were predicted by an inviscid flow theory of Martensen method, which was also applied to select an airfoil for required performance in the present design process. The aerodynamic performance of designed blades can be predicted quickly and reasonably by using the through-flow calculation method in the preliminary design process. It would be recommendable to adopt three-dimensional viscous flow calculation at the final design refinement stage.

  • PDF

초미량 정밀살포용 무인헬리콥터의 SW05 로터 양력시험 (SW05 Rotor Lift of an Unmanned Helicopter for Precise ULV Aerial Application)

  • 구영모;석태수;신시균
    • Journal of Biosystems Engineering
    • /
    • 제35권1호
    • /
    • pp.31-36
    • /
    • 2010
  • A small unmanned helicopter was suggested to replace the conventional spray system. Aerial application using an agricultural helicopter helps precise and timely spraying, and reduces labor intensity and environmental pollution. In this research, a rotor system (SW05) was developed and its lift capability was evaluated. Lift force for the dead weight of the helicopter was obtained at the grip pitch angle of $12^{\circ}$. As the pitch angle increased to $14^{\circ}$ and $16^{\circ}$, the payload increased to 176 N and 216 N, respectively. Compared with SW04 airfoil performance in the total lift, the SW05 airfoil showed nearly the same capacity, but the payload of the SW05 was reduced because of the increased dead weight. A rated flight condition was defined as lifting mean payload of 294 N with the grip pitch angles of $16{\sim}17^{\circ}$ at the rotor rotating speed of 850~950 rpm for the adjusted engine power. The fuel consumption would be 4.8~6.0 L/hr, and the air temperature of cooling fan should be kept below $160^{\circ}C$.

상류형 풍력 터빈의 주요 소음원과 방사소음에 대한 실험적/이론적 고찰 (Experimental and Theoretical Study on Main Noise Sources and Its Radiations of Upwind Wind Turbines)

  • 이광세;정철웅;신수현;정성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 춘계학술대회 논문집
    • /
    • pp.72-73
    • /
    • 2010
  • In this paper, the main noise sources and its radiated noise levels of upwind horizontal-axis wind turbines are experimentally and theoretically investigated. Theoretical predictions for indentifying the dominant source locations are made by using the empirical noise prediction model of Brooks et al. (1989) for the airfoil self noise. Through the comparison of theoretical results with the experimental results, turbulence-boundary-layer-trailing-edge (TBL-TE) noise is revealed to be the dominant source over all frequency range and separation and stall (S-S) noise is possibly important in the relative lower frequency range compared with TBL-TE noise.

  • PDF

레인지 후드용 시로코 홴의 성능 향상을 위한 연구 (Numerical study on the Performance Improvement of the Sirocco Fan in a Range Hood)

  • 박상태;최영석;박문수;김철호;권오명
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.572-577
    • /
    • 2004
  • This paper presents numerical study on the performance improvement of the sirocco fan in a range hood. The performance of sirocco fan means a higher flowrate, a higher static pressure and a lower required motor power in a fixed geometry constraint. Various impeller geometric parameters, such as blade profile, blade diameter, blade thickness profile and blade exit angle, were investigated by numerically and the results were compared with each other to know the effects on the performance. In this approach, the volute geometry were fixed with the original shape. The numerical results show that the blade profile with airfoil shape and small exit blade thickness increases the performance. The blade exit angle shows optimum angle within a varied range. The efficiency of the optimized exit angle was about $10\%$ higher than the base blade exit angle and the static pressure was about $28\%$ higher at the flow coefficient 0.22.

  • PDF