• Title/Summary/Keyword: Airflow Rate

Search Result 224, Processing Time 0.025 seconds

The Patterns of Change in Arterial Oxygen Saturation and Heart Rate and Their Related Factors during Voluntary Breath holding and Rebreathing (자발적 호흡정지 및 재개시 동맥혈 산소포화도와 심박수의 변동양상과 이에 영향을 미치는 인자)

  • Lim, Chae-Man;Kim, Woo-Sung;Choi, Kang-Hyun;Koh, Youn-Suck;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.4
    • /
    • pp.379-388
    • /
    • 1994
  • Background : In sleep apnea syndrome, arterial oxygen saturation($SaO_2$) decreases at a variable rate and to a variable degree for a given apneic period from patient to patient, and various kinds of cardiac arrythmia are known to occur. Factors supposed to affect arterial oxygen desaturation during apnea are duration of apnea, lung voulume at which apnea occurs, and oxygen consumption rate of the subject. The lung serves as preferential oxygen source during apnea, and there have been many reports related with the influence of lung volume on $SaO_2$ during apnea, but there are few, if any, studies about the influence of oxygen consumption rate of an individual on $SaO_2$ during breath holding or about the profile of arterial oxygen resaturation after breathing resumed. Methods : To investigate the changes of $SaO_2$ and heart rate(HR) during breath holding(BH) and rebreathing(RB) and to evaluate the physiologic factors responsible for the changes, lung volume measurements, and arterial blood gas analyses were performed in 17 healthy subjects. Nasal airflow by thermistor, $SaO_2$ by pulse oxymeter and ECG tracing were recorded on Polygraph(TA 4000, Gould, U.S.A.) during voluntary BH & RB at total lung capacity(TLC), at functional residual capacity(FRC) and at residual volume(RV), respectively, for the study subjects. Each subject's basal metabolic rate(BMR) was assumed on Harris-Benedict equation. Results: The time needed for $SaO_2$ to drop 2% from the basal level during breath holding(T2%) were $70.1{\pm}14.2$ sec(mean${\pm}$standard deviation) at TLC, $44.0{\pm}11.6$ sec at FRC, and $33.2{\pm}11.1$ sec at RV(TLC vs. FRC, p<0.05; FRC vs. RV, p<0.05). On rebreathing after $SaO_2$ decreased 2%, further decrement in $SaO_2$ was observed and it was significantly greater at RV($4.3{\pm}2.1%$) than at TLC($1.4{\pm}1.0%$)(p<0.05) or at FRC($1.9{\pm}1.4%$)(p<0.05). The time required for $SaO_2$ to return to the basal level after RB(Tr) at TLC was not significantly different from those at FRC or at RV. T2% had no significant correlation either with lung volumes or with BMR respectively. On the other hand, T2% had significant correlation with TLC/BMR(r=0.693, p<0.01) and FRC/BMR (r=0.615, p<0.025) but not with RV/BMR(r=0.227, p>0.05). The differences between maximal and minimal HR(${\Delta}HR$) during the BH-RB manuever were $27.5{\pm}9.2/min$ at TLC, $26.4{\pm}14.0/min$ at RV, and $19.1{\pm}6.0/min$ at FRC which was significantly smaller than those at TLC(p<0.05) or at RV(p<0.05). The mean difference of 5 p-p intervals before and after RB were $0.8{\pm}0.10$ sec and $0.72{\pm}0.09$ sec at TLC(p<0.001), $0.82{\pm}0.11$ sec and $0.73{\pm}0.09$ sec at FRC(p<0.025), and $0.77{\pm}0.09$ sec and $0.72{\pm}0.09$ sec at RV(p<0.05). Conclusion Healthy subjects showed arterial desaturation of various rates and extent during breath holding at different lung volumes. When breath held at lung volume greater than FRC, the rate of arterial desaturation significantly correlated with lung volume/basal metabolic rate, but when breath held at RV, the rate of arterial desaturation did not correlate linearly with RV/BMR. Sinus arrythmias occurred during breath holding and rebreathing manuever irrespective of the size of the lung volume at which breath holding started, and the amount of change was smallest when breath held at FRC and the change in vagal tone induced by alteration in respiratory movement might be the major responsible factor for the sinus arrythmia.

  • PDF

Correlation of Tracheal Cross-sectional Area with Parameters of Pulmonary Function in COPD (만성 폐쇄성 폐질환에서 기관의 단면적과 폐기능지표와의 상관관계)

  • Lee, Chan-Ju;Lee, Jae-Ho;Song, Jae-Woo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Chung, Hee-Soon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.5
    • /
    • pp.628-635
    • /
    • 1999
  • Background : Maximal expiratory flow rate is determined by the size of airway, elastic recoil pressure and the collapsibility of airway in the lung. The obstruction of expiratory flow is one of the major functional impairments of emphysema, which represents COPD. Nevertheless, expiratory narrowing of upper airway may be recruited as a mechanism for minimizing airway collapse, and maintaining lung volume and hyperinflation by an endogenous positive end-expiratory pressure in patients with airflow obstruction. We investigated the physiologic role of trachea in respiration in emphysema. Method : We included 20 patients diagnosed as emphysema by radiologic and physiologic criteria from January to August in 1997 at Seoul Municipal Boramae Hospital. Chest roentgenogram, high resolution computed tomography(HRCT), and pulmonary function tests including arterial blood gas analysis and body plethysmography were taken from each patient. Cross-sectional area of trachea was measured according to the respiratory cycle on the level of aortic arch by HRCT and calibrated with body surface area. We compared this corrected area with such parameters of pulmonary function tests as $PaCO_2$, $PaO_2$, airway resistance, lung compliance and so on. Results : Expiratory cross-sectional area of trachea had significant correlation with $PaCO_2$ (r=-0.61, p<0.05), $PaO_2$ (r=0.6, p<0.05), and minute ventilation (r=0.73, p<0.05), but inspiratory cross-sectional area did not (r=-0.22, p>0.05 with $PaCO_2$, r=0.26, p>0.05 with $PaO_2$, and r=0.44, p>0.05 with minute ventilation). Minute ventilation had significant correlation with tidal volume (r=0.45, p<0.05), but it had no significant correlation with respiratory frequency (r=-0.31, p>0.05). Cross-sectional area of trachea had no significant correlation with other parameters of pulmonary function including $FEV_1$, FVC, $FEV_1$/FVC, peak expiratory flow, residual volume, diffusing capacity, airway resistance, and lung compliance, whether the area was expiratory or inspiratory. Conclusion : Cross-sectional area of trachea narrowed during expiration in emphysema, and its expiratory area had significant correlation with $PaCO_2$, $PaO_2$, and minute ventilation.

  • PDF

The Influence of Fat-Free Mass to Maximum Exercise Performance in Patients with Chronic Obstructive Pulmonary Disease (만성폐쇄성폐질환에서 제지방량이 최대운동능력에 미치는 영향)

  • Mun, Yeung Chul;Park, Hye Jung;Shin, Kyeong Cheol;Chung, Jin Hong;Lee, Kwan Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.4
    • /
    • pp.346-354
    • /
    • 2002
  • Background : Dyspnea and a limitation in exercise performance are important cause of disability in patients with chronic obstructive pulmonary disease(COPD). A depleted nutritional state is a common problem in patients with a severe degree of chronic airflow limitation. This study was carried out to assess the factors determining the maximum exercise capacity in patients with COPD. Methods : The resting pulmonary function, nutritional status, and maximum exercise performance was assessed in 83 stable patients with moderate to severe COPD. The nutritional status was evaluated by bioelectrical impedance analysis. Maximum exercise performance was evaluated by maximum oxygen uptake($VO_2max$). Results : Among the 83 patients, 59% were characterized by nutritional depletion. In the depleted group, a significantly lower peak expiratory flow rate(p<0.05), Kco(p<0.01) and maximum inspiratory pressure(p<0.05), but a significantly higher airway resistance(p<0.05) was observed. The maximum oxygen uptake and the peak oxygen pulse were lower in the depleted group. The $VO_2max$ correlated with some of the measures of the body composition : fat-free mass(FFM), fat mass(FM), body mass index(BMI), intracellular water index(ICW index), and pulmonary function : forced vital capacity(FVC), forced inspiratory vital capacity(FIVC), diffusion capacity(DLCO) : or maximum respiratory pressure : maximum inspiratory pressure(PImax), maximum expiratory pressure(PEmax). Stepwise regression analysis demonstrated that the FFM, DLCO and FIVC accounted for 68.8% of the variation in the $VO_2max$. Conclusion : The depletion of the FFM is significant factor for predicting the maximum exercise performance in patients with moderate to severe COPD.

Detection of Pathogenic Viruses in the Atmosphere during Asian Dust Events in Incheon City (인천지역에서 황사 기간 동안 대기 중의 바이러스 검출에 관한 연구)

  • Park, Jeong Woong;Lim, Young Hee;Kyung, Sun Young;An, Chang Hyeok;Lee, Sang Pyo;Jeong, Seong Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.3
    • /
    • pp.279-285
    • /
    • 2005
  • Background : Ambient particles during Asian dust events are usually less than $10{\mu}m$ in size, and known to be associated with the adverse effects on the general population. There is little evidence linking Asian dust to adverse effects on the airways. In 2002, the authors found that particulate matter during Asian dust events had an effect on the symptoms and pulmonary function of patients with bronchial asthma. An aggravating factor might be that of a viral infection, but this remains unclear. Conversely, it has been speculated that African dust may carry the virus responsible for foot and mouth disease. Asian dust events are also likely to be responsible for transporting viruses, some of which are pathogenic, and common in many environments. Therefore, in this study, air samples were screened for the presence of viruses. Methods : Air samples were collected 20 times each during Asian dust events and under non-dust conditions, for at least 6 hours per sample, using a high volume air sampler (Sibata Model HV500F), with an airflow rate of 500L/min, between April and August 2003, and between April and August 2004. The samples were then screened for the presence of targeted viruses (Influenza A, B, Hog cholera virus, and Aphthovirus) using a polymerase chain reaction method. Results : One Asian dust event occurred between April and August 2003, and 3 between April and August 2004, with a 24 hour average PM10 level of $148.0{\mu}g/m^3$. The 24 hour average PM10 level was $57{\mu}g/m^3$. There was a significant difference in the PM10 concentration between dusty and clear days. No viruses (Influenza virus, Aphthovirus, and Hog cholera virus) were identified in the air samples obtained during the dusty days. Conclusions : Although no virus was detected in this study, further studies will be needed to identify suspected viruses carried during Asian dust events, employing more appropriate virus detection conditions.