• Title/Summary/Keyword: Aircraft trajectories

Search Result 45, Processing Time 0.026 seconds

Robust Tracker Design Method Based on Multi-Trajectories of Aircraft

  • Kim, Eung-Tai;Andrisani, D. II
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.39-49
    • /
    • 2002
  • This paper presents a robust tracker design method that is specific to the trajectories of target aircraft. This method assumes that representative trajectories of the target aircraft are available. The exact trajectories known to the tracker enables the incorporation of the exact data in the tracker design instead of the measurement data. An estimator is designed to have acceptable performance in tracking a finite number of different target trajectories with a capability to trade off the mean and maximum errors between the exact trajectories and the estimated or predicted trajectories. Constant estimator gains that minimize the cost functions related to the estimation or prediction error are computed off-line from an iterative algorithm. This tracker design method is applied to the longitudinal motion tracking of target aircraft.

Changing Effect in Aerodynamic Characteristics of a Captive Body Separated from Aircraft (항공기 탑재체의 분리 후 공력 특성 변화 효과)

  • Cho, Hwan-Kee;Lee, Sang-Hyun;Kang, Chi-Hang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.397-404
    • /
    • 2011
  • The aerodynamic characteristics of a separated captive body in flow field around aircraft are studied to observe aerodynamic stability for safe separation from aircraft. Since the captive body separated from aircraft is initially exposed to unsteady flow pattern, the change of aerodynamic forces and moments should be measured to analyze how the flow pattern affects on the captive body at the vicinity of aircraft. Aerodynamic forces and moments of the separated captive body are measured at selected positions along predictable dropping trajectories. The measuring trajectories, generated by the free drop test of the dropping model in the wind tunnel, are consisted of 9 possible lines by free dropped trajectories. Experimental results show that the aerodynamic forces and moments are significantly varied with the distance between the captive body and aircraft. In conclusion, the change of aerodynamic characteristics within flow field around aircraft should be considered to simulate trajectories of the separated captive body from aircraft.

Extracting Patterns of Airport Approach Using Gaussian Mixture Models and Analyzing the Overshoot Probabilities (가우시안 혼합모델을 이용한 공항 접근 패턴 추출 및 패턴 별 과이탈 확률 분석)

  • Jaeyoung Ryu;Seong-Min Han;Hak-Tae Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.888-896
    • /
    • 2023
  • When an aircraft is landing, it is expected that the aircraft will follow a specified approach procedure and then land at the airport. However, depending on the airport situation, neighbouring aircraft or the instructions of the air traffic controller, there can be a deviation from the specified approach. Detecting aircraft approach patterns is necessary for traffic flow and flight safety, and this paper suggests clustering techniques to identify aircraft patterns in the approach segment. The Gaussian Mixture Model (GMM), one of the machine learning techniques, is used to cluster the trajectories of aircraft, and ADS-B data from aircraft landing at the Gimhae airport in 2019 are used. The aircraft trajectories are clustered on the plane, and a total of 86 approach trajectory patterns are extracted using the centroid value of each cluster. Considering the correlation between the approach procedure pattern and overshoots, the distribution of overshoots is calculated.

Estimation of Allowable Path-deviation Time in Free-space Optical Communication Links Using Various Aircraft Trajectories

  • Kim, Chul Han
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.210-214
    • /
    • 2019
  • The allowable path-deviation time of aircraft in a free-space optical communication system has been estimated from various trajectories, using different values of aircraft speeds and turn rates. We assumed the existence of a link between the aircraft and a ground base station. First, the transmitter beam's divergence angle was calculated through two different approaches, one based on a simple optical-link equation, and the other based on an attenuation coefficient. From the calculations, the discrepancy between the two approaches was negligible when the link distance was approximately 110 km, and was under 5% when the link distance ranged from 80 to 140 km. Subsequently, the allowable path-deviation time of the aircraft within the tracking-error tolerance of the system was estimated, using different aircraft speeds, turn rates, and link distances. The results indicated that the allowable path-deviation time was primarily determined by the aircraft's speed and turn rate. For example, the allowable path-deviation time was estimated to be ~3.5 s for an aircraft speed of 166.68 km/h, a turn rate of $90^{\circ}/min$, and a link distance of 100 km. Furthermore, for a constant aircraft speed and turn rate, the path-deviation time was observed to be almost unchanged when the link distance ranged from 80 to 140 km.

NUMERICAL STUDY OF AN EXTERNAL STORE RELEASED FROM A FIGHTER AIRCRAFT

  • Yoon, Young-Hyun;Cho, Hwan-Kee;Chung, H.S.;Lee, S.H.;Han, C.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.80-85
    • /
    • 2008
  • The prediction of the separation trajectories of external stores released from a military aircraft is an important task in the aircraft design area having the objective to define the operational and release envelopes. This paper presents the results obtained for store separation by employing commercial softwares, FLUENT and CFD-FASTRAN. FLUENT treats the rigid body motion by employing a remeshing scheme. CFD-FASTRAN uses Chimera(overset) grid and interpolations. It was found that, for the prediction of the trajectories and behavior of the stores separated from the wing, both codes show the good agreement with the experimental results.

Numerical Study of an External Store Released from a Fighter aircraft

  • Han, Cheol-Heui;Yoon, Young-Hyun;Cho, Hwan-Kee;Lee, Sang-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.374-377
    • /
    • 2008
  • The prediction of the separation trajectories of the external stores released from a military aircraft is an important task in the aircraft design area having the objective to define the operational and release envelopes. This paper presents the results obtained for store separation by employing commercial sorftwares, FLUENT and CFD-FASTRAN. FLUENT treats the rigid body motion by employing the remeshing scheme. CFD-FASTRAN uses the chimera(overset) grid and interpolations. It was found that, for the prediction of the trajectories and behavior of the stores separated from the wing, both codes shows the good agreement with the experimental results.

  • PDF

Numerical Study of an External Store Released from a Fighter aircraft

  • Han, Cheol-Heui;Yoon, Young-Hyun;Cho, Hwan-Kee;Lee, Sang-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.374-377
    • /
    • 2008
  • The prediction of the separation trajectories of the external stores released from a military aircraft is an important task in the aircraft design area having the objective to define the operational and release envelopes. This paper presents the results obtained for store separation by employing commercial sorftwares, FLUENT and CFD-FASTRAN. FLUENT treats the rigid body motion by employing the remeshing scheme. CFD-FASTRAN uses the chimera(overset) grid and interpolations. It was found that, for the prediction of the trajectories and behavior of the stores separated from the wing, both codes shows the good agreement with the experimental results.

  • PDF

External Store Separation Analysis Using Moving and Deforming Mesh Method (이동변형격자 기법을 활용한 외부장착물 분리운동 해석)

  • Ahn, Byeong Hui;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.9-20
    • /
    • 2019
  • A military aircraft generally includes external stores such as fuel tanks or external arming, depending on the purpose of the operation. When a store is dropped from a military aircraft at high subsonic, transonic, or supersonic speeds, the aerodynamic forces and moments acting on the store can be sufficient to send the store back into contact with the aircraft. This can cause damage to the aircraft and endanger the life of the crew. In this study, time accurate computational fluid dynamics (CFD) with dynamic moving grid (moving and deformable mesh, MDM) technique has been used to accurately calculate store trajectories. For the verification of the present numerical approach, a wind tunnel test model for the wing-pylon-finned store configuration has been considered and analyzed. The comparison results for the ejected store trajectories between the present numerical analysis and the wind tunnel test data at the Mach number of 0.95 and 1.2 are presented. It is also importantly shown that the numerical parameter of MDM technique gives significant effect for the calculated store trajectory in the low-supersonic flow such as Mach 1.2.

Airplanes at constant speeds on inclined circular trajectories

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.399-425
    • /
    • 2016
  • The dynamical requirements are obtained for airplanes to travel on inclined circular trajectories. Formulas are provided for determining the load factor, the bank angle, the lift coefficient and the thrust or power required for the motion. The dynamical properties of the airplane are taken into account, for both, airplanes with internal combustion engines and propellers, and airplanes with jet engines. A procedure is presented for the construction of tables from which the flyability of trajectories at a given angle of inclination can be read, together with the corresponding minimum and maximum radii allowed. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and a F-16 jet airplane.

Low thrust inclined circular trajectories for airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.237-267
    • /
    • 2017
  • Automatic trajectory re-planning is an integral part of unmanned aerial vehicle mission planning. In order to be able to perform this task, it is necessary to dispose of formulas or tables to assess the flyability of various typical flight segments. Notwithstanding their importance, there exist such data only for some particularly simple segments such as rectilinear and circular sub-trajectories. This article presents an analysis of a new, very efficient, way for an airplane to fly on an inclined circular trajectory. When it flies this way, the only thrust required is that which cancels the drag. It is shown that, then, much more inclined trajectories are possible than when they fly at constant speed. The corresponding equations of motion are solved exactly for the position, the speed, the load factor, the bank angle, the lift coefficient and the thrust and power required for the motion. The results obtained apply to both types of airplanes: those with internal combustion engines and propellers, and those with jet engines. Conditions on the trajectory parameters are derived, which guarantee its flyability according to the dynamical properties of a given airplane. An analytical procedure is described that ensures that all these conditions are satisfied, and which can serve for producing tables from which the trajectory flyability can be read. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and an F-16 jet airplane.