• Title/Summary/Keyword: Aircraft Vibration

Search Result 348, Processing Time 0.024 seconds

Inverse Kinematic Analysis for a three-axis Hydraulic Fatigue Simulator Coupling (3축 유압 피로 시뮬레이터의 커플링에 대한 역기구학적 해석)

  • Kim, Jinwan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.16-20
    • /
    • 2020
  • The fatigue happening during the road riding of the vehicle and for the moment the aircraft lands on the runway is closely related to the life cycle of the landing gear, the airframe, the vehicle's suspension, etc. The multiple loads acting on the wheel are longitudinal, lateral, vertical, and braking forces. To study the dynamic characteristics and fatigue stiffness of the vehicle, the dynamic fatigue simulator generally has been used to represent the real road vibration in the lab. It can save time and cost. In hardware, the critical factor in the hydraulic fatigue simulator structure is to decouple each axis and to endure several load vibration. In this paper, the inverse kinematic analysis method derives the magnitude of movement of the hydraulic servo actuator by the coupling after rendering the maximum movement displacement in the axial direction at the center of the dummy wheel. The result of the analysis is that the coupling between the axes is weak to reproduce the real road vibrations precisely.

Assessment of statistical sampling methods and approximation models applied to aeroacoustic and vibroacoustic problems

  • Biedermann, Till M.;Reich, Marius;Kameier, Frank;Adam, Mario;Paschereit, C.O.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.529-550
    • /
    • 2019
  • The effect of multiple process parameters on a set of continuous response variables is, especially in experimental designs, difficult and intricate to determine. Due to the complexity in aeroacoustic and vibroacoustic studies, the often-performed simple one-factor-at-a-time method turns out to be the least effective approach. In contrast, the statistical Design of Experiments is a technique used with the objective to maximize the obtained information while keeping the experimental effort at a minimum. The presented work aims at giving insights on Design of Experiments applied to aeroacoustic and vibroacoustic problems while comparing different experimental designs and approximation models. For this purpose, an experimental rig of a ducted low-pressure fan is developed that allows gathering data of both, aerodynamic and aeroacoustic nature while analysing three independent process parameters. The experimental designs used to sample the design space are a Central Composite design and a Box-Behnken design, both used to model a response surface regression, and Latin Hypercube sampling to model an Artificial Neural network. The results indicate that Latin Hypercube sampling extracts information that is more diverse and, in combination with an Artificial Neural network, outperforms the quadratic response surface regressions. It is shown that the Latin Hypercube sampling, initially developed for computer-aided experiments, can also be used as an experimental design. To further increase the benefit of the presented approach, spectral information of every experimental test point is extracted and Artificial Neural networks are chosen for modelling the spectral information since they show to be the most universal approximators.

DEFECT DETECTION WITHIN A PIPE USING ULTRASOUND EXCITED THERMOGRAPHY

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.637-646
    • /
    • 2007
  • An UET (ultrasound excited thermography) has been used for several years for a remote non-destructive testing in the automotive and aircraft industry. It provides a thermo sonic image for a defect detection. A thermograhy is based On a propagation and a reflection of a thermal wave, which is launched from the surface into the inspected sample by an absorption of a modulated radiation. For an energy deposition to a sample, the UET uses an ultrasound excited vibration energy as an internal heat source. In this paper the applicability of the UET for a realtime defect detection is described. Measurements were performed on two kinds of pipes made from a copper and a CFRP material. In the interior of the CFRP pipe (70mm diameter), a groove (width - 6mm, depth - 2.7mm, and length - 70mm) was engraved by a milling. In the case of the copper pipe, a defect was made with a groove (width - 2mm, depth - 1mm, and length - 110 mm) by the same method. An ultrasonic vibration energy of a pulsed type is injected into the exterior side of the pipe. A hot spot, which is a small area around the defect was considerably heated up when compared to the other intact areas, was observed. A test On a damaged copper pipe produced a thermo sonic image, which was an excellent image contrast when compared to a CFRP pipe. Test on a CFRP pipe with a subsurface defect revealed a thermo sonic image at the groove position which was a relatively weak contrast.

A Signal Processing Technique for Predictive Fault Detection based on Vibration Data (진동 데이터 기반 설비고장예지를 위한 신호처리기법)

  • Song, Ye Won;Lee, Hong Seong;Park, Hoonseok;Kim, Young Jin;Jung, Jae-Yoon
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.111-121
    • /
    • 2018
  • Many problems in rotating machinery such as aircraft engines, wind turbines and motors are caused by bearing defects. The abnormalities of the bearing can be detected by analyzing signal data such as vibration or noise, proper pre-processing through a few signal processing techniques is required to analyze their frequencies. In this paper, we introduce the condition monitoring method for diagnosing the failure of the rotating machines by analyzing the vibration signal of the bearing. From the collected signal data, the normal states are trained, and then normal or abnormal state data are classified based on the trained normal state. For preprocessing, a Hamming window is applied to eliminate leakage generated in this process, and the cepstrum analysis is performed to obtain the original signal of the signal data, called the formant. From the vibration data of the IMS bearing dataset, we have extracted 6 statistic indicators using the cepstral coefficients and showed that the application of the Mahalanobis distance classifier can monitor the bearing status and detect the failure in advance.

Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature (미분구적법을 이용 중면신장 및 회전관성의 영향을 고려한 원형아치의 고유진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic circular arches has been the subject of a large number of investigations. One of the efficient procedures for the solution of ordinary differential equations or partial differential equations is the differential quadrature method DQM. This method has been applied to a large number of cases to overcome the difficulties of the complex computer algorithms, as well as excessive use of storage due to conditions of non-linear geometries, loadings, or material properties. This study uses DQM to analyze the in-plane vibration of the circular arches considering the effects of midsurface extension and rotatory inertia. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The solutions from DQM are compared with exact solutions or other numerical solutions for cases in which they are available and given to analyze the effects of midsurface extension and rotatory inertia on the frequency parameters of the circular arches.

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.

Dynamic calculation of a tapered shaft rotor made of composite material

  • Rachid, Zahi;Kaddour, Refassi;Achache, Habib
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.51-71
    • /
    • 2018
  • This work proposes a theoretical and numerical study on the behavior of a tapered shaft rotor made of composite materials by the classical version h and the version p of the finite element method. Hierarchical form functions are used to define the model. The purpose of this paper is to determine the expressions of the kinetic and potential energies of the tree necessary for the results of the equations of motion. A comparison between the version h and the p version of the finite element method of the functions of polynomial and trigonometric hierarchical forms with six degrees of freedom per node, of a composite tapered and cylindrical shaft which rotates at a constant speed about its axis. It is found that when the number of functions of form (the version p) is increased, the solution converges. It is also observed that the conicity of the shaft increases the rigidity with respect to a uniform shaft having the same mechanical properties. The numerical simulation allowed us to determine the natural frequencies and the critical speeds of the composite shaft systems are compared with those available in the literature and the effectiveness of the methods used are discussed.

Damage detection through structural intensity and vibration based techniques

  • Petrone, G.;Carzana, A.;Ricci, F.;De Rosa, S.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.613-637
    • /
    • 2017
  • The development systems for the Structural Health Monitoring has attracted considerable interest from several engineering fields during the last decades and more specifically in the aerospace one. In fact, the introduction of those systems could allow the transition of the maintenance strategy from a scheduled basis to a condition-based approach providing cost benefits for the companies. The research presented in this paper consists of a definition and next comparison of four methods applied to numerical measurements for the extraction of damage features. The first method is based on the determination of the Structural Intensity field at the on-resonance condition in order to acquire information about the dissipation of vibrational energy throughout the structure. The Damage Quantification Indicator and the Average Integrated Global Amplitude Criterion methods need the evaluation of the Frequency Response Function for a healthy plate and a damaged one. The main difference between these two parameters is their mathematical definition and therefore the accuracy of the scalar values provided as output. The fourth and last method is based on the Mode-shape Curvature, a FRF-based technique which requires the application of particular finite-difference schemes for the derivation of the curvature of the plate. All the methods have been assessed for several damage conditions (the shape, the extension and the intensity of the damage) on two test plates: an isotropic (steel) plate and a 4-plies composite plate.

Probabilistic Analysis of Dynamic Characteristics of Structures considering Joint Fastening and Tolerance (체결부 및 공차를 고려한 구조물의 확률기반 동적 특성 연구)

  • Won, Jun-Ho;Kwang, Kang-Jin;Choi, Joo-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.44-50
    • /
    • 2010
  • Structural vibration is a significant problem in many multi-part or multi-component assemblies. In aircraft industry, structures are composed of various fasteners, such as bolts, snap, hinge, weld or other fastener or connector (collectively "fasteners"). Due to these, prediction and design involving dynamic characteristics is quite complicated. However, the current state of the art does not provide an analytical tool to effectively predict structure's dynamic characteristics, because consideration of structural uncertainties (i.e. material properties, geometric tolerance, dimensional tolerance, environment and so on) is difficult and very small fasteners in the structure cause a huge amount of analysis time to predict dynamic characteristics using the FEM (finite element method). In this study, to resolve the current state of the art, a new approach is proposed using the FEM and probabilistic analysis. Firstly, equivalent elements are developed using simple element (e.g. bar, beam, mass) to replace fasteners' finite element model. Developed equivalent elements enable to explain static behavior and dynamic behavior of the structure. Secondly, probabilistic analysis is applied to evaluate the PDF (probability density function) of dynamic characteristics due to tolerance, material properties and so on. MCS (Monte-Carlo simulation) is employed for this. Proposed methodology offers efficiency of dynamic analysis and reality of the field as well. Simple plates joined by fasteners are taken as an example to illustrate the proposed method.

Effect of Si Contents on Structure and Mechanical Properties of Al-Si Alloy Metallic Foams (Al-Si 합금 발포금속의 조직 및 기계적 특성에 미치는 Si함량의 영향)

  • Kim, Byeong-Gu;Tak, Byeong-Su;Jeong, Seung-Reung;Jeong, Min-Jae;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Metal foam is a porous or cellular structure material and representative property is a very high porosity. Foamed materials have very special properties such as sound, vibration, energy and impact absorption capacity. Especially this properties are widely used for safety demands of architecture, auto and aircraft industry. But metal foam need to increased its compression strength and hardness. This study were researched about Al-Si alloy foams with variation amount of Si contents for their fabrication and properties such as porosity, cell structure, microstructure and mechanical properties. The result are that the range of pore size is 2~4 $mm{\phi}$, the high porosity are 88%, high yield strength is 1.8MPa, the strain ratio is 60~70% and vickers hardness is 33.1~50.6.