• Title/Summary/Keyword: Aircraft Configuration

Search Result 219, Processing Time 0.022 seconds

Numerical analysis of the effect of V-angle on flying wing aerodynamics

  • Zahir Amine;Omer Elsayed
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.141-158
    • /
    • 2023
  • In current research work, the aerodynamics performance of a newly designed large flying V aircraft is numerically investigated. Three Flying V configurations, with V-angles of 50°, 70° and 90° that represent the minimum, moderate, and maximum configurations respectively, were designed and modeled to assess their aerodynamic performance at cruise flight conditions. The unstructured mesh was developed using ICEM CFD and Ansys-Fluent was used as an aerodynamic solver. The developed models were numerically simulated at cruise flight conditions with a Mach number equal to 0.15. K-ω SST turbulence model was chosen to account for flow turbulence.The authors performed steady flow simulations.The results obtained from the experimentation reveal that the maximum main angle configuration of 90° had the highest CLmax value of 0.46 compared to other configurations. While the drag coefficient remained the same for all three configurations, the 50° V-angle configuration achieved the maximum stall angle of 35°. With limited stall delay benefits, the flying V possesses no sufficient stability, due to the flow separation detected at whole elevon and winglet suction side areas at AoA equal and higher than 30°.

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF

Initial Climb Mission Analysis of a Solar HALE UAV (태양광 고고도 장기체공 무인기의 초기 상승 임무 분석)

  • Shin, Kyo-Sic;Hwang, Ho-Yon;Ahn, Jon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.468-477
    • /
    • 2014
  • In this research, how a solar powered HALE (high altitude long endurance) UAV (Unmanned Aerial Vehicle) can climb and reach mission altitude, 18km, starting from the ground using only solar energy. A glider type aircraft was assumed as a baseline configuration which has wing area of $35.98m^2$ and aspect ratio of 25. Configuration parameters, lift and drag coefficients were calculated using OpenVSP and XFLR5 that are NASA open source programs, and climb flights were predicted through energy balance between available energy from solar power and energy necessary for a climb flight. Minimum time climb flight was obtained by minimizing flight velocities at each altitude and total time and total energy consumption to reach the mission altitude were predicted for different take off time. Also, aircraft moving distances due to westerly wind and flight speed were calculated.

A Convergent Study on the Air Flow due to the Configuration of Aircraft Edge Wing (항공기 날개 끝부분의 형상에 따른 공기 유동에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.215-219
    • /
    • 2021
  • The flow analyses around the wing of airplane installed with winglet or sharkelt were carried out in this study. At the model without winglet, it can be seen that the air flows beside the wing and the flow is concentrated at the end of wing. At the model of winglet or sharklet, the pressure on the bottom of the wing happens to be lower in the wide area than for model without winglet. At the analysis result, the air flowing next to the wing can be seen to go over and rotates over the main wing. The model with the sharklet shows that the flow rate is the fastest. In case of model with sharklet, it is thought that the maximum total pressure of flow is distributed at the bottom of the wing, which can further improve the lift force of the wing. It is thought that the analysis results in this study on the air flow due to the configuration of aircraft edge wing can be helped at its convergent research.

Design of Electret Microphone Interfacing Circuit for Microphone Signal Path Control between Intercoms (인터콤 간 마이크 신호 경로 제어를 위한 Electret Microphone 연동 회로 설계)

  • Sung-hee Cho;Seong-jae Jeong;Min-seon Kim;Deok-woo Nam;Da-na Jung;Jun-hyoung Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.309-314
    • /
    • 2024
  • Avionics Intercom performs communication between pilot, co-pilot and crews in aircraft. In the case of developing intercom in the aircraft modification development project, additional communication equipment or avionics equipment is configured to link the existing intercom with the headsets. Newly designed intercom needs a configuration that receives an aircraft headset microphone and transmits a microphone signal to the existing intercom, and these signals are required to perform signal quality above a certain level. To satisfy these requirements, microphone transmitter circuit has designed and tested, but quality factors of signal were not suitable. In order to avoid the issue, eliminate transmitter and apply signal bridge circuit considered with load effect, and it meets requirements. In this paper, the test results for the signal quality for each configuration are reviewed.

Verification of Flight Control Law Similarity and HILS Environment Reliability for Fighter Aircraft (전투기급 비행제어법칙 상사성 및 HILS 환경 신뢰성 검증)

  • Ahn, Seong-Jun;Kim, Chong-Sup;Cho, In-Je;Lee, Eun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.701-708
    • /
    • 2009
  • The flight control law of developed flight control computer(DFLCC) is developed based on operation flight program of advanced trainer aircraft full scale development final configuration. The flight control law design is used common use development tool in GUI(Graphic User Interface) environment. The flight control law transformed to C-Code is reflected in OFP. The OFP is verified by the standardized verification process. But, before standardized verification process, we need preliminary verification process such as similarity of flight control law and reliability of developed HILS. Similarity of flight control law is verified by comparing the aircraft response of advanced trainer aircraft and those of the developed control law. Also, reliability of developed HILS is verified by comparing the aircraft response of HILS and Non-real time simulation result. This paper verifies similarity of developed control law and reliability of HILS environment as comparing aircraft response.

A Study on Modeling Program Development of an Environmental Control System (환경조절장치(ECS)의 모델링 프로그램 개발에 관한 연구)

  • Yoo, Young-Joon;Lee, Hyung-Ju;Kho, Seong-Hee;Ki, Ja-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.57-63
    • /
    • 2009
  • A modeling and simulation program for an environmental control system (ECS) of a pod installed under wings of an aircraft was developed in order to estimate the system‘s performance during a flight. First, through the system configuration analysis in the main operational condition of the aircraft system, an ECS configuration adopting an air cycle machine (ACM) was selected. Therefore the modeling program was developed to simulate the ECS with an ACM. Second, the sensitivity analyses on performance variation of main components were conducted to complete the conceptual design of the ECS. A design point for the system and its components was obtained through the analysis with the modeling and simulation program. The design point for the system and components was obtained through the analysis with the modeling and simulation program. Third, in order to study the feasibility of the ECS configuration, off-design performances of the ECS on various flight conditions, such as take off, maneuver, cruise and landing etc were estimated. Dynamic characteristics were analyzed by transient performance evaluations.

Aerodynamic Design of the SUAV Proprotor (스마트무인기 프롭로터 공력설계)

  • Choi, Seong-Wook;Kim, Yu-Shin;Park, Young-Min;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.16-26
    • /
    • 2005
  • The aerodynamic design of a proprotor for the Smart UAV adopting tiltrotor aircraft concept is conducted in this study. Since proprotor of tiltrotor aircraft is operated at both rotary and fixed wing mode with single configuration rotor, the proprotor has to be designed to meet performance requirements for both flight modes. The aerodynamic design of proprotor is accomplished by combining three sources of data - the proprotor performance data, the aerodynamic data of vehicle, and the performance data of engine. The performance analysis code for proprotor is based on the combined momentum and blade element theory and validated by comparison with the TRAM data. In order to design configuration for a proprotor satisfying requirements for both rotary and fixed wing mode, various kind of performance maps are constructed for many performance and configuration parameters. From the analysis the twist angle of 38 degrees and the solidity of 0.118 are decided to be the optimal geometric parameters for both operating conditions.

A Study on the Effect of Engine Nozzle Configuration on the Plume IR Signature (엔진 노즐 형상이 Plume 적외선 신호에 미치는 영향에 관한 연구)

  • An, Sung-Yong;Kim, Won-Cheol;Oh, Seong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.688-694
    • /
    • 2012
  • A study on the effect of engine nozzle configuration on the engine plume Infra-red (IR) signature characteristics is performed. Configuration design of an engine nozzle with high aspect ratio to reduce IR signature level and a cylindrical nozzle which is typically used for conventional aircraft which does not require IR signature reduction is performed. And CFD analysis for the two nozzles is performed to compare the flowfields characteristics of the two nozzles. Finally IR signature analysis for the two nozzles is accomplished to calculate the total intensity level at mid-wave infra-red and investigate the differences of IR signature characteristics between the two nozzles.

Aerodynamics Characteristics of Hypersonic Vehicle in Near Space

  • Wu, Dingyi;Liu, Zhenxia;Xiao, Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.503-505
    • /
    • 2008
  • The purpose of the current study is to examine the aerodynamic characteristics of two hypersonic vehicles in near space. One is derived from waverider shape, and the other from liftbody. The objective of this study are threefold. The first is to creat an computational database for hypersonic vehicle configurations. The second is to examine the effects of individual vehicle components on hypersonic configurations and to determine the differences in aerodynamic characteristics that result from integrating all vehicle components. The third objective is to evaluate the controllability of each of the fully integrated vehicles and the effectiveness of the control surface design. These objectives were accomplished using DSMC solutions and aerodynamic code developed in Northwestern Polytechnical University. The results are analyzed also in three sections. First, the results of the waverider shape and liftbody shape without integrated vehicle components are presented. Second, the results of adding aircraft components to the waverider shape and liftbody shape are presented. Finally, the aerodynamic characteristics of the fully integrated waverider-derived configuration and liftbody-derived configuration are examined and compared with those of the pure waverider shape and liftbody shape. Comparation between fully integrated waverider-derived configuration and liftbody-derived configuration are also presented in this paper.

  • PDF