• 제목/요약/키워드: Aircraft Configuration

검색결과 219건 처리시간 0.024초

리어제트 항공기 날개의 천음속 공탄성해석 (TRANSONIC AEROELASTIC ANALYSIS OF LEARJET AIRCRAFT WING MODEL)

  • 트란탄도안;김동현;김요한
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.453-457
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses haw been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

비즈니스 제트 항공기 날개의 천음속 공탄성 해석 (Transonic Aeroelastic Analysis of Business Jet Aircraft Wing Model)

  • 김요한;김동현;트란탄도안
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.299-299
    • /
    • 2011
  • In this study, transonic aeroelastic response analyses have been conducted for the business jet aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

  • PDF

항공안전인증을 고려한 소형제트항공기 플랩 재설계 (Re-Design of Wing Flap for Very Light Jet Aircraft Incorporating Airworthiness Certification)

  • 윤정원;이효진;이재우;김상호;변영환;김임권
    • 한국항공운항학회지
    • /
    • 제19권3호
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, a conceptual design process for Very Light Jet aircraft has been proposed incorporating aircraft safety certification. During the proposed design process, satisfaction of the airworthiness certification for an intermediate resulting aircraft configuration is evaluated and then redesigns are carried out if necessary and until the designed aircraft configuration satisfies the airworthiness requirements. Certification database has been developed using FAR 23, AC 23, KAS 23, and CS 23 as the airworthiness certification. Based on the developed certification database Design Certifcation Related Table has been produced to use the airworthiness requirements as design constraints in the propsed design process. Using Quality Function Deployment the design variables for a redesign are carefully selected and a design optimization is performed. To demonstrate the feasibility and effectiveness of rapid aircraft conceptual design using the proposed approach, a Very Light Jet design optimization including a redesign of wing flap has been performed and the design results have been presented.

패널코드를 이용한 T-50 형상의 공력특성 예측 및 검증 (AN ANALYSIS OF THE AERODYNAMIC CHARACTERISTICS OF A T-50 CONFIGURATION USING A PANEL CODE AND ITS VALIDATION)

  • 박선욱;김도준;제상언;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.131-135
    • /
    • 2006
  • The aerodynamic characteristics of a T-50 aircraft configuration are investigated by a subsonic panel method. Panel methods are best applicable to the lifting surfaces such as wings and airfoils. Source and doublets are used in the present code as a basic singularities of the panel technique. The panel method is first assessed by applying it to several benchmark problems for which other solutions and experimental data are available, such as a swept wing and wing body configuration. The prediction results are compared with experimental data and show good agreement in all cases considered. Finally, the method is applied to a T-50 aircraft configuration and excellent agreement with flight test data in lift coefficients is found.

  • PDF

항공기 무장시스템 Gun Gas 공력특성에 관한 연구 (Aerodynamic Effects of Gun Gas on the Aircraft's Armament System)

  • 최형준;김승한
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.623-629
    • /
    • 2020
  • 본 연구는 항공기 기총발사 비행조건에서 Gun Port 주변 공기 유동장을 분석하여 디버터(Diverter) 옵션 형상에 따른 Gun Gas 유동량 및 경로를 확인하고 항공기 성능 및 안전성 영향을 확인하였다. Gun Port Diverter는 기총사격 시 발생하는 열을 효과적으로 낮춰주는 역할을 할 뿐아니라 Gun Gas를 상향방향으로 효율적으로 배출시키는 역할을 수행하며, 그 형상에 따라 Gun Gas 경로가 변경될 수 있다. 후방 Gun Port Diverter의 옵션 형상에 따라 기총 발사 시 Gun Gas의 유량, 경로, 압력을 분석하였다. Gun Port 내부 속도분포와 온도변화를 분석한 결과 후방 Diverter를 지나는 유량은 옵션 형상에 따라 급격이 감소하는 경향을 보이지만, 전방을 지나는 유량은 변화가 적은 비슷한 경향을 보임을 확인하였다. 따라서 기총발사 시 발생하는 Gun Gas는 후방 Gun Port Diverter 옵션 형상과 관계없이 항공기 표면에서 충분한 유동 거리가 확보되며, Diverter 옵션 형상에 따른 Gun Gas 유동의 정체는 Gun Port 내부 온도 상승에 큰 영향을 미침을 확인하였다.

Static and dynamic characterization of a flexible scaled joined-wing flight test demonstrator

  • Carregado, Jose;Warwick, Stephen;Richards, Jenner;Engelsen, Frode;Suleman, Afzal
    • Advances in aircraft and spacecraft science
    • /
    • 제6권2호
    • /
    • pp.117-144
    • /
    • 2019
  • High Altitude and Long Endurance (HALE) aircraft are capable of providing intelligence, surveillance and reconnaissance (ISR) capabilities over vast geographic areas when equipped with advanced sensor packages. As their use becomes more widespread, the demand for additional range, endurance and payload capability will increase and designers are exploring non-conventional configurations to meet the increasing demands. One such configuration is the joined-wing concept. A joined-wing aircraft is one that typically connects a front and aft wings in a diamond shaped planform. One such example is the Boeing SensorCraft configuration. While the joined-wing configuration offers potential benefits regarding aerodynamic efficiency, structural weight, and sensing capabilities, structural design requires careful consideration of elastic buckling resulting from the aft wing supporting, in compression, part of the forward wing structural loading. It has been shown already that this is a nonlinear phenomenon, involving geometric nonlinearities and follower forces that tend to flatten the entire configuration, leading to structural overload due to the loss of the aft wing's ability to support the forward wing load. Severe gusts are likely to be the critical design condition, with flight control system interaction in the form of Gust Load Alleviation (GLA) playing a key role in minimizing the structural loads. The University of Victoria Center for Aerospace Research (UVic-CfAR) has built a 3-meter span scaled and flexible wing UAV based on the Boeing SensorCraft design. The goal is to validate the nonlinear structural behavior in flight. The main objective of this research work is to perform Ground Vibration Tests (GVT) to characterize the dynamic properties of the scaled flight vehicle. Results from the experimental tests are used to characterize the modal dynamics of the aircraft, and to validate the numerical models. The GVT results are an important step towards a safe flight test program.

인증규정을 고려한 KLA-100항공기 고양력장치 최적화 설계 (Flap Design Optimization for KLA-100 Aircraft in compliance with Airworthiness Certification)

  • 박진환;;;김상호;이재우
    • 한국항공우주학회지
    • /
    • 제41권8호
    • /
    • pp.649-656
    • /
    • 2013
  • 고양력장치는 항공기의 이착륙 및 실속성능에 큰 영향을 미친다. 그러므로, 이 논문에서는 주어진 2차원 플랩 형상에 대하여 가장 최적화된 플랩 위치와 변위각을 얻는 슬롯티드 플랩 설계 최적화 프로세스을 제안하였다. 플랩 변위각 및 Gap, Overlap을 양력을 증가시키는 주요 변수로 생각하였고, 정확한 해석결과를 위해 공력해석 소프트웨어로 ANSYS Fluent 13.0.0$^{(R)}$을 사용하였다. 최적화된 형상은 SQP(Sequential Quadratic Programming) 알고리즘을 통해 도출됐으며, 최적화된 플랩과 함께 ADSP(Aircraft Design Synthesis Program) in-house 성능해석 코드를 사용하여 항공기의 성능을 시험하였고, 이착륙 거리, 실속속도 등의 성능변수들이 KAS-VLA 인증규정을 만족하는 결과를 얻었다.

무게중심 변화에 따른 자유날개 동체꺾임형 항공기의 조종성 해석 (Free-wing Tilt-body Aircraft Controllerability Analysis for Change of Center of Gravity)

  • 박욱제
    • 한국항공운항학회지
    • /
    • 제19권4호
    • /
    • pp.1-5
    • /
    • 2011
  • The free-wing tilt-body aircraft is researched in the flight performance characteristics for center of gravity (CG) change. All of speed, body tilt angle and center of gravity change are simulated to determine the flight envelope by a non-linear 3-DOF mathematical model. In flight, this aircraft configuration changes by the tiltable empennage. Then, flight dynamics distinguishes from those of a conventional fixed-wing aircraft. Though flight performance and trimmability are studied by CG change, the flight model of free-wing tilt-body aircraft is to reduce the hidden risk and to achieve the successful flight test. It is analyzed the flight characteristics by CG change that distinguishes free-wing tilt-body aircraft from the conventional aircraft.

Adaptable conceptual aircraft design model

  • Fioriti, Marco
    • Advances in aircraft and spacecraft science
    • /
    • 제1권1호
    • /
    • pp.43-67
    • /
    • 2014
  • This paper presents a new conceptual design model ACAD (Adaptable Conceptual Aircraft Design), which differs from the other models due to its considerable adaptability to the different classes of aircraft. Another significant feature is the simplicity of the process which leads to the preliminary design outputs and also allowing a substantial autonomy in design choices. The model performs the aircraft design in terms of total weight, weight of aircraft subsystems, airplane and engine performances, and basic aircraft configuration layout. Optimization processes were implemented to calculate the wing aspect ratio and to perform the design requirements fulfillment. In order to evaluate the model outcomes, different test cases are presented: a STOL ultralight airplane, a new commuter with open-rotor engines and a last generation fighter.

통합된 상용 툴을 이용한 전투기급 항공기 개념설계 (Conceptual Design of Fighter-class Aircraft Using Integrated Commercial Tools)

  • 이성진;남화진;박영근;오장환;이대열
    • 한국군사과학기술학회지
    • /
    • 제17권2호
    • /
    • pp.189-196
    • /
    • 2014
  • Automated design program using commercial process integration and optimization program was developed for conceptual design of fighter-class aircraft. Wind tunnel test data and performance analysis results were compared for the verification of analysis tool of this program, and the usefulness of the tool was found. After integration with radar cross section analysis tool, the correlation with configuration design variables of wing, tail and performance parameters was identified by design of experiment, and the optimized configuration for weight and RCS was derived from optimization of empty weight and average frontal RCS value. After parameter definition of fuselage, the program can be implemented for full aircraft configuration.