• Title/Summary/Keyword: Aircraft

Search Result 4,791, Processing Time 0.027 seconds

Exposure Assessment of Airborne Bacteria and Fungi in the Aircraft

  • Doo-Young Kim;Ki-Youn Kim
    • Safety and Health at Work
    • /
    • v.13 no.4
    • /
    • pp.487-492
    • /
    • 2022
  • Objective: The exposure levels of disease-causing bacteria and germs were assessed on aircraft cleaning workers on multiple different aircrafts. Method: Five measuring points were selected depending on the aircraft types. Four aircraft cleaning agencies were selected for the test. Aircraft cleaning work was classified as intensive cleaning and general cleaning work. Ventilation in aircraft when sampling during the cleaning operation was categorized into forced ventilation and natural ventilation. The collection of airborne microorganisms was made through inertial impactors which were installed 1.5 meters above the bottom of the aircraft. The airborne bacteria and fungus growth badges were selected by Trytpic Soy Agar and Sabouraud Dextrose Agar. Results: The average concentrations of bacteria in the air were higher in the order of small, medium, and large airplanes. Rainy days had higher concentrations inside and outside the aircraft as compared to those in sunny days. Regarding ventilation, concentrations in natural ventilation were higher than concentrations in forced ventilation. According to the type of work, the concentrations in the intensive cleaning groups (cleaning one plane a day) were lower than those of the ordinary cleaning groups (cleaning several planes per day). Conclusion: The concentration levels of airborne bacteria and fungi in the aircraft surveyed were lower than the indoor environmental standards of Korea (800 cfu/m3 and 500 cfu/m3). The average concentrations of bacteria in the air and fungi in the air were highest in small aircraft owned by Company D.

A Study on the Scale Optimization of the Korean-type Aircraft Carrier based on Efficiency Considering National Competency (국가 역량을 고려한 효율성 기반 한국형 항공모함 규모 최적화 연구)

  • Jung, Byungki;Kim, Kitae;Park, Sungje
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.49-56
    • /
    • 2022
  • ROK Navy intends to secure the Korean-type aircraft carrier in order to effectively prepare for various future security threats. In general, the Korean national competency is considered to be at the level of having an aircraft carrier, but it is unclear what scale aircraft carrier would be appropriate. In this study, the efficiency was evaluated through the relative comparison between national competency(national power, economic power) and the scale of aircraft carriers, and the optimal scale of the Korean-type aircraft carrier that could be acquired was presented. A DEA(Data Envelopment Analysis) model was applied to aircraft carriers(19 aircraft carriers in 11 countries) currently in operation and scheduled to be possessed in the world. As input variables, CINC(Composite Index of National Capability) and GDP(Gross Domestic Product), which are the most widely used as indicators of national and economic power, and as output variables, the full-load displacement, length, and width of aircraft carriers were selected. ARIMA(short-term within 5 years) and simple regression(long-term over 5 years) were used to estimate the future national competency of each country at the time of aircraft carriers acquisition. The relative efficiency score of the Korean-type aircraft carrier currently being evaluated is 1.062, and it was evaluated as small-scale aircraft carrier compared to the national competency. Based on Korean national competency, the optimal scale of the Korean-type aircraft carrier calculated by aggregating benchmark groups, is 58,308.1 tons of full-load displacement, 279.4m in length, and 68.3m in width.

A Study on the Flight Safety Analysis of Military Aircraft External Stores (군용 항공기 외장물의 비행 안전성 분석에 관한 연구)

  • Hyeonsoo Kim;Minsu Kim;Byungjoon Shin;Younghee Jo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.83-90
    • /
    • 2023
  • The external store fitted to the aircraft may affect the flight characteristics and flight safety of the aircraft, which requires the analyses and testing on it. The purpose of this study is to identify and analyze types of failures that can affect the flight safety of aircraft due to the installation of external stores, and to check the flight safety of aircraft through dropping tests of the external stores. After identifying the types of failures that could affect the flight safety of the aircraft, the criticality was calculated to analyze the effect on the flight safety of the aircraft. Four types of failures were selected: unintentional dropping, failure of dropping, unintentional main wing deployment, and release of tail wing restraint of the external store, which are considered to affect the flight safety of the aircraft due to the operation of the external store. As a result of the aircraft's flight safety analysis on the failure types, the criticality requirements were met. Based on this, after obtaining the airworthiness certification, the drop test was successfully performed to confirm the flight safety of the aircraft by mounting an external store on the aircraft. However, in addition to the four hazards carried out in this study, the real external stores of the military aircraft may have various factors affecting the flight safety of the aircraft, so further research will be needed.

Aerodynamic design optimization of an aircraft wing for drag reduction using computational fluid dynamics approach

  • Shiva, Kumar M.R;Srinath, R;Vigneshwar, K;Ravi, Kumar B
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.15-20
    • /
    • 2020
  • The aircraft industry supports aviation by building aircraft and manufacturing aircraft parts for their maintenance. Fuel economization is one of the biggest concerns in the aircraft industry. The reduction in specific fuel consumption of aircraft can be achieved by a variety of means, simplest and more effective is the one to impose minor modifications in the aircraft main wing or the parts which are exposed to the air flow. This method can lead to a reduction in aerodynamic resistance offered by the air and have a smoother flight. The main objective of this study is to propose geometric design modifications on an existing aircraft wing which acts as a vortex generator and it can reduce the drag and increase lift to drag ratio, leading to lower fuel consumption. The NACA 2412 aircraft wing is modified and designed. Rigorous flow analysis is carried out using computational fluid dynamics based software Ansys Fluent. Results show that saw tooth modification to the main wing shows the best aerodynamic efficiency as compared to other modifications.

Tail Sizing of 95-Seat Type Turboprop Aircraft (95인승급 터보프롭 중형항공기 꼬리날개 사이징)

  • Lee, Jangho;Kang, Youngsin;Bae, Hyogil;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.15-19
    • /
    • 2013
  • Tail wing is important to designing of civil aircrafts, because it is responsible for aircraft stability and control. Tail wing has a role in aircraft control and makes aircraft fly stably without any pilot control input. Also, designing of tail wing determine trim drag force in whole aircraft. Center of gravity(CG) of aircraft travels with various effects as placement of passenger's seats, location of cargo bay, etc. In designing horizontal tail volume, aircraft CG travel has to be considered to have margin so that it should be sized to provide adequate stability and control for the airplane's entire CG range throughout the flight envelope. Finally, it is essential to have sufficient elevator control to perform stall at forward CG for all flaps down configurations. Such stalls establish the FAR stall speed which airplane take-off and landing performance. This paper deals with the process for tail wing design regarding the aircraft CG travel and results for 95-seat type turboprop aircraft.

A Study of Aircraft Ground Motion (항공기 지상운동 특성에 관한 연구)

  • Song, Won Jong
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.17-25
    • /
    • 2017
  • Vertical reaction force between ground and tire is an important parameter determining the ground behavior characteristics of aircraft. This parameter can be used to calculate the lateral force and friction. However, it is hard to obtain this parameter in real-time when the aircraft is taxiing. Therefore, pre-analysis of ground behavior and vertical reaction force should be conducted using ground simulation results to prevent rollover or hazardous scenarios. In this paper, a Landing Gear and Full-Aircraft model was constructed using VI-Aircraft S/W. The roll behavior of aircraft was analyzed using steering simulation results compared with taxi-test data.

A Study on the Damage of Aircraft Wing Attacked by Anti-Aircraft Artillery (대공포 피격에 의한 항공기 날개 손상에 관한 연구)

  • Sim, Sang-Ki;Yoon, Kyong-Sik;Kim, Geun-Won;Shin, Ki-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.738-745
    • /
    • 2012
  • Aircraft battle damage repair(ABDR) is emergency repair method for the damaged aircraft in battle field. The main purpose of the ABDR is to increase the readiness of fighter aircraft during wartime. While many studies have been conducted to develop ABDR method, few efforts have focused on evaluation of damage and determination of the size of hole caused by enemy's anti-aircraft artillery attack. The aim of this study is essentially to quantify damage of aircraft wing attacked by anti-aircraft artillery. The computer simulations was performed to accomplish this goal. A number of simulations have been carried out to compare size of damages under various attack conditions. In conclusion, it was revealed that the size of damage varied depending on the type and direction of cannonball. Furthermore, in this paper, the proper path sizes are suggested for different damage conditions.

A Statistical Method on the Estimation of the Maintenance Manpower of Aircraft (통계적 방법을 이용한 항공기 정비인력산정)

  • 송근우;최석철
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.1
    • /
    • pp.70-88
    • /
    • 2000
  • In this research we consider a statistical model to estimate the optimal maintenance manpower of aircraft which we use at present. We design a multiple regression model, apply to three types of aircraft to estimate the optimal maintenance manpower of aircraft. This paper provides reasonable results about maintenance manpower of aircraft, and contributes accomplishment of mission for air and air support operations.

  • PDF

Implementation of the small aircraft simulator with autopilot system using SIMULINK (SIMULINK를 이용한 소형 항공기용 자동비행시스템 시뮬레이터 구현)

  • Lee, Dong-Kyu;Chae, Dong-Han;Lee, Sang-Chul;Oh, Hwa-Suk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.3
    • /
    • pp.7-14
    • /
    • 2008
  • In modern aircraft, an autopilot system is getting more important. There are not many autopilot systems applied to small aircraft. Also the autopilot system in large or medium aircraft is difficult to apply to small aircraft directly. It is necessary to make a new autopilot system for small aircraft. In this paper, we implement the small aircraft simulator with autopilot system using SIMULINK. The various modes of autopilot - such as altitude select/hold, attitude hold, heading hold, etc. - are implemented to the flight simulator and tested. We also implement the VOR mode for aircraft guidance.

  • PDF

Development Strategy for Aviation Industry through Introduction of Domestic Avionics Qualification System (국내 항공전자 자격제도 도입을 통한 항공산업의 발전 전략)

  • Kim, Young-In
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.3
    • /
    • pp.12-17
    • /
    • 2020
  • Avionics is a compound word of aviation and electronics that began to be used in the late 1930s. In the components or sub-systems installed to the aircraft, avionics is something that works by electronic technology. In the past, the aircraft mate, the flight engineer, and the radar operators performed the work on board the aircraft but the modern aircraft have replaced these tasks with avionics. the aircraft mechanics who maintain and manage such complex aircraft must have expertise and technics with the development of avionics to maintain aircraft airworthiness. This paper is about the introduction of domestic avionics qualification system and the development of avionics maintenance technology. For this, the SWOT analysis is performed by identifying the internal and external environment. And recommend the strategy and direction of domestic avionics qualification and education system.