• Title/Summary/Keyword: Airborne System

Search Result 440, Processing Time 0.025 seconds

Design of Airborne Terminal System for Joint Tactical Data Link System Complete Data-link

  • Choi, Hyo-Ki;Yoon, Chang-Bae;Hong, Seok-Jun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.139-147
    • /
    • 2020
  • In this paper, design measure were proposed for the construction of terminal systems for airborne platforms, which are key element in the Joint Tactical Data Link System (JTDLS) complete system. The Korean perfect tactical data link (JTDLS) is a communication system to establish an independent tactical data link network and needs to develop a MIDS-LVT (Link-16) communication terminal for datalink. Once a Ground/Navy JTDLS terminal system is established around airborne platform, it will be possible to break away from reliance on NATO-based tactical data link joint operations and establish independent Korean surveillance reconnaissance real-time data sharing and tactical data link operations concepts. in this paper, the essential development elements of airborne platform mounting and operable JTDLS terminals are presented, and the concept of system design is proposed to embody them. Further, improved system performance was analyzed by applying the concepts of complex relative navigation system and Advanced TDMA protocol for the deployment of airborne tactical datalink networks.

Airborne Software Approval and Common DO-178B Pitfalls (항공용 소프트웨어 인증과 개발단계별 주의사항)

  • Yi, Baeckjun;Jin, Youngkwon
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • It is booming to use computer owing to the information society, and embedded software application have grown in airborne systems and equipment. So this introduces airborne software, RTCA DO-178B, life cycle and its data, and software development pitfalls in design and certification.

Airborne HPGe spectrometer for monitoring of air dose rates and surface activities

  • Marcel Ohera;Lubomir Gryc;Irena Cespirova;Jan Helebrant;Lukas Skala
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4039-4047
    • /
    • 2023
  • This contribution describes the application of HPGe detector for the airborne quantitative analysis. The hardware of the airborne HPGe system was designed from the commercial components with only exception of the newly designed AirHPGeSpec special software to control, measure and process the data. The system was calibrated for the local air kerma rates measured on helicopter board and its conversion to the air kerma rates at 1 m above the ground was proposed. Two examples of the air kerma rates measured over the former uranium mining areas are presented and compared with the results of other airborne system on the board. This airborne HPGe system could be also used for measuring the surface activities in a radiation event. The nuclides of 131I, 132Te - 132I, 133I, 134I, 135I, 137Cs, 134Cs, 88Rb and 103Ru were selected from possible nuclear power plant emergency scenarios. The Monte Carlo simulation was used to calculate HPGe detector efficiencies for the flight altitudes from 25 to 300 m for the energies from 300 keV to 3 MeV of the nuclides in question. Also, the detection limits according to the Currie method as well as ISO 11929-2010 for selected nuclides are presented.

The development of ground and airborne control system for remotely piloted vehicle (무인항공기의 지상 및 기상 제어 시스템 개발)

  • 김영철;이윤생;김승주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.361-366
    • /
    • 1991
  • A ground and airborne control system for remotely piloted vehicle (RPV) is described. 1) Ground control system 2) airborne control system 3) the method of measuring aircraft attitude and heading 4) autopilot 5) the method of treating emergency status 6) the method of transmitting and receiving communication data 7) the method of displaying aircraft status 8) the characteristics of the aircraft control system are discussed in some detail.

  • PDF

Development of Automatic Airborne Image Orthorectification Using GPS/INS and LIDAR Data (GPS/INS와 LIDAR자료를 이용한 자동 항공영상 정사보정 개발)

  • Jang Jae-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.693-699
    • /
    • 2006
  • Digital airborne image must be precisely orthorectified to become geographical information. For orthorectification of airborne images, GPS/INS (Global Positioning System/Inertial Navigation System) and LIDAR (LIght Detection And Ranging) elevation data were employed. In this study, 635 frame airborne images were produced and LIDAR data were converted to raster image for applying to image orthorectification. To derive images with constant brightness, flat field correction was applied to images. The airborne images were geometrically corrected by calculating internal orientation and external orientation using GPS/INS data and then orthorectified using LIDAR digital elevation model image. The precision of orthorectified images was validated by collecting 50 ground control points from arbitrary five images and LIDAR intensity image. As validation result, RMSE (Root Mean Square Error) was 0.387 as almost same as only two times of pixel spatial resolution. It is possible that this automatic orthorectification method of airborne image with higher precision is applied to airborne image industry.

The Study on Airworthiness Certification Process on Military Airborne Safety Critical Software based on DO-178 (DO-178 기반의 군용항공기 탑재 안전필수 소프트웨어 감항인증 방안에 대한 고찰)

  • Heo, Jin Gu;Kim, Min Sung;Kim, Man Tae;Moon, Yong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.62-68
    • /
    • 2019
  • The software installed on an aircraft is directly related to its safety. Therefore, it shall comply with the standards of the airworthiness certification to ensure safety of flight. Airborne software should be developed in accordance with the DO-178 (Software Consideration in Airborne Systems and Equipment Certification) to comply with the airworthiness certification criterion. However, the military airborne software has been developed in accordance with the DAPA weapons system software development and management manual. In this paper, we completed a questionnaire survey of software experts. We also suggest a military airborne software development/certification process based on DO-178.

AUTOMATIC ORTHORECTIFICATION OF AIRBORNE IMAGERY USING GPS/INS DATA

  • Jang, Jae-Dong;Kim, Young-Seup;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.684-687
    • /
    • 2006
  • Airborne imagery must be precisely orthorectified to be used as geographical information data. GPS/INS (Global Positioning System/Inertial Navigation System) and LIDAR (LIght Detection And Ranging) data were employed to automatically orthorectify airborne images. In this study, 154 frame airborne images and LIDAR vector data were acquired. LIDAR vector data were converted to raster image for employing as reference data. To derive images with constant brightness, flat field correction was applied to the whole images. The airborne images were geometrically corrected by calculating internal orientation and external orientation using GPS/INS data and then orthorectified using LIDAR digital elevation model image. The precision of orthorectified images was validated using 50 ground control points collected in arbitrary selected five images and LIDAR intensity image. In validation results, RMSE (Root Mean Square Error) was 0.365 smaller then two times of pixel spatial resolution at the surface. It is possible that the derived mosaicked airborne image by this automatic orthorectification method is employed as geographical information data.

  • PDF

Inactivation of S. epidermidis, B. subtilis, and E. coli Bacteria Bioaerosols Deposited on a Filter Utilizing Airborne Silver Nanoparticles

  • Lee, Byung-Uk;Yun, Sun-Hwa;Ji, Jun-Ho;Bae, Gwi-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.176-182
    • /
    • 2008
  • In the present study, a control methodology utilizing airborne silver nanoparticles is suggested and tested with respect to its potential to control Gram-positive Staphylococcus epidermidis and Bacillus subtilis, and Gram-negative Escherichia coli bacteria bioaerosols deposited on filters. As it is known that the Gram-negative bacteria are sensitive to airflow exposure, the main focus of this study for testing the airborne silver nanoparticles effect was the Gram-positive Staphylococcus epidermidis and Bacillus subtilis bacteria bioaerosols whereas Escherichia coli bioaerosols were utilized for comparison. Airborne bacteria and airborne silver nanoparticles were quantitatively generated in an experimental system. Bioaerosols deposited on the filter were exposed to airborne silver nanoparticles. The physical and biological properties of the airborne bacteria and airborne silver nanoparticles were measured via aerosol measurement devices. From the experimental results, it was demonstrated that this method utilizing airborne silver nanoparticles offers potential as a bioaerosol control methodology.

Indoor distribution characteristics of airborne bacteria in pig buildings as influenced by season and housing type

  • Kim, Ki Youn;Ko, Han Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.742-747
    • /
    • 2019
  • Objective: A concentration of airborne bacteria generated from swine houses is recognized to be relatively higher than other work places and it is essential to optimally manage it to prevent farmers' respiratory diseases. This study was conducted to assess the distribution characteristics of airborne bacteria in swine houses located at South Korea. Methods: A total 27 pig buildings of the enclosed type operated with mechanical ventilation system by a side wall fan and deep-pit manure system with slats were surveyed. Air samples were collected at 1.0 m above the middle floor in pig housing room. A six-stage viable particulate cascade impactor was used to identify the distribution of the sizes of particles in diameter. Results: Seasonal mean levels of airborne bacteria in the housing rooms of gestation/farrowing pigs, nursery pigs and growing/fattening pigs were 3,428(${\pm}1,244$) colony forming unit $(cfu)/m^3$, $8,325({\pm}3,209)cfu/m$, and $13,254({\pm}6,108)cfu/m^3$ for spring; $9,824({\pm}2,157)cfu/m^3$, $18,254({\pm}5,166)cfu/m^3$, and $24,088({\pm}9,274)cfu/m^3$ for summer; $1,707({\pm}957)cfu/m^3$, $4,258({\pm}1,438)cfu/m^3$, and $8,254({\pm}2,416)cfu/m^3$ for autumn; and $2,322({\pm}1,352)cfu/m^3$, $6,124({\pm}1,527)cfu/m^3$ and $12,470({\pm}4,869)cfu/m^3$ for winter, respectively. Conclusion: Concentrations of airborne bacteria according to pig housing type were highest in growing/fattening housing room followed by nursery housing room and gestation/farrowing housing room. In terms of seasonal aspect, the pig building showed the highest levels of airborne bacteria in summer followed by spring, winter and autumn. The respirable airborne bacteria which are ranged between 0.6 and $4.7{\mu}m$ accounted for approximately 60% compared to total airborne bacteria regardless of pig housing type.

Development and Verification of the Compact Airborne Imaging Spectrometer System

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.397-408
    • /
    • 2008
  • A wide variety of applications of imaging spectrometer have been proved using data from airborne systems. The Compact Airborne Imaging Spectrometer System (CAISS) was jointly designed and developed as the airborne hyperspectral imaging system by Korea Aerospace Research Institute (KARI) and ELOP inc., Israel. The primary mission of the CAISS is to acquire and provide full contiguous spectral information with high spatial resolution for advanced applications in the field of remote sensing. The CAISS consists of six physical units; the camera system, the gyro-stabilized mount, the jig, the GPS/INS, the power inverter and distributor, and the operating system. These subsystems are to be tested and verified in the laboratory before the flight. Especially the camera system of the CAISS has to be calibrated and validated with the calibration equipments such as the integrating sphere and spectral lamps. To improve data quality and its availability, it is the most important to understand the mechanism of imaging spectrometer system and the radiometric and spectral characteristics. The several performance tests of the CAISS were conducted in the camera system level. This paper presents the major characteristics of the CAISS, and summarizes the results of performance tests in the camera system level.