• Title/Summary/Keyword: Airborne LiDAR

Search Result 150, Processing Time 0.031 seconds

Water Depth and Riverbed Surveying Using Airborne Bathymetric LiDAR System - A Case Study at the Gokgyo River (항공수심라이다를 활용한 하천 수심 및 하상 측량에 관한 연구 - 곡교천 사례를 중심으로)

  • Lee, Jae Bin;Kim, Hye Jin;Kim, Jae Hak;Wie, Gwang Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.235-243
    • /
    • 2021
  • River surveying is conducted to acquire basic geographic data for river master plans and various river maintenance, and it is also used to predict changes after river maintenance construction. ABL (Airborne Bathymetric LiDAR) system is a cutting-edge surveying technology that can simultaneously observe the water surface and river bed using a green laser, and has many advantages in river surveying. In order to use the ABL data for river surveying, it is prerequisite step to segment and extract the water surface and river bed points from the original point cloud data. In this study, point cloud segmentation was performed by applying the ground filtering technique, ATIN (Adaptive Triangular Irregular Network) to the ABL data and then, the water surface and riverbed point clouds were extracted sequentially. In the Gokgyocheon river area, Chungcheongnam-do, the experiment was conducted with the dataset obtained using the Leica Chiroptera 4X sensor. As a result of the study, the overall classification accuracy for the water surface and riverbed was 88.8%, and the Kappa coefficient was 0.825, confirming that the ABL data can be effectively used for river surveying.

Key Point Extraction from LiDAR Data for 3D Modeling (3차원 모델링을 위한 라이다 데이터로부터 특징점 추출 방법)

  • Lee, Dae Geon;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.479-493
    • /
    • 2016
  • LiDAR(Light Detection and Ranging) data acquired from ALS(Airborne Laser Scanner) has been intensively utilized to reconstruct object models. Especially, researches for 3D modeling from LiDAR data have been performed to establish high quality spatial information such as precise 3D city models and true orthoimages efficiently. To reconstruct object models from irregularly distributed LiDAR point clouds, sensor calibration, noise removal, filtering to separate objects from ground surfaces are required as pre-processing. Classification and segmentation based on geometric homogeneity of the features, grouping and representation of the segmented surfaces, topological analysis of the surface patches for modeling, and accuracy assessment are accompanied by modeling procedure. While many modeling methods are based on the segmentation process, this paper proposed to extract key points directly for building modeling without segmentation. The method was applied to simulated and real data sets with various roof shapes. The results demonstrate feasibility of the proposed method through the accuracy analysis.

A Study on the Effects of Airborne LiDAR Data-Based DEM-Generating Techniques on the Quality of the Final Products for Forest Areas - Focusing on GroundFilter and GridsurfaceCreate in FUSION Software - (항공 LiDAR 자료기반 DEM 생성기법의 산림지역 최종산출물 품질에 미치는 영향에 관한 연구 - FUSION Software의 GroundFilter 및 GridsurfaceCreate 알고리즘을 중심으로 -)

  • PARK, Joo-Won;CHOI, Hyung-Tae;CHO, Seung-Wan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.154-166
    • /
    • 2016
  • This study aims to contribute to better understanding the effects of the changes in the parameter values of GroundFilter algorithm(GF), which performs filtering process, and of GridsurfaceCreate algorithm(GC), which creates regular grid, provided in Fusion software on the accuracy of elevation of the final LiDAR-DEM products through comparative analysis. In order to test whether there are significant effects on the accuracy of the final LiDAR-DEM products due to the changes of GF(1, 3, 5, 7, 9) parameter levels and GC(1, 3, 5, 7, 9) parameter levels, two-way ANOVA is conducted based on residuals. The residuals are calculated using the differences between each sample plot's paired field-measured and DEM-derived elevation values given each individual GF and GC level. After that, Tukey HSD test is conducted as a post hoc test for grouping the levels. As a result of two-way ANOVA test, it is found that the change in the GF levels significantly affects the accuracy of LiDAR-DEM elevations(F-value : 27.340, p < 0.01), while the change in the GC levels does not significantly affect the accuracy of LiDAR-DEM elevations(F-value : 0.457). It is also found that the interaction effect between GF and GC levels is not likely to exist(F-value : 0.247). From the results of the Tukey HSD test in the GF levels, GF levels can be divided into two groups('7', '5', '9', '3' vs '1') by the differences of means of residuals. Given the current conditions, LiDAR-DEM can achieve the best accuracy when the level '7' and '3' are given as GF and GC level, respectively.

LiDAR Chip for Automated Geo-referencing of High-Resolution Satellite Imagery (라이다 칩을 이용한 고해상도 위성영상의 자동좌표등록)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.319-326
    • /
    • 2014
  • The accurate geo-referencing processes that apply ground control points is prerequisite for effective end use of HRSI (High-resolution satellite imagery). Since the conventional control point acquisition by human operator takes long time, demands for the automated matching to existing reference data has been increasing its popularity. Among many options of reference data, the airborne LiDAR (Light Detection And Ranging) data shows high potential due to its high spatial resolution and vertical accuracy. Additionally, it is in the form of 3-dimensional point cloud free from the relief displacement. Recently, a new matching method between LiDAR data and HRSI was proposed that is based on the image projection of whole LiDAR data into HRSI domain, however, importing and processing the large amount of LiDAR data considered as time-consuming. Therefore, we wmotivated to ere propose a local LiDAR chip generation for the HRSI geo-referencing. In the procedure, a LiDAR point cloud was rasterized into an ortho image with the digital elevation model. After then, we selected local areas, which of containing meaningful amount of edge information to create LiDAR chips of small data size. We tested the LiDAR chips for fully-automated geo-referencing with Kompsat-2 and Kompsat-3 data. Finally, the experimental results showed one-pixel level of mean accuracy.

The Accuracy Evaluation of Digital Elevation Models for Forest Areas Produced Under Different Filtering Conditions of Airborne LiDAR Raw Data (항공 LiDAR 원자료 필터링 조건에 따른 산림지역 수치표고모형 정확도 평가)

  • Cho, Seungwan;Choi, Hyung Tae;Park, Joowon
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • With increasing interest, there have been studies on LiDAR(Light Detection And Ranging)-based DEM(Digital Elevation Model) to acquire three dimensional topographic information. For producing LiDAR DEM with better accuracy, Filtering process is crucial, where only surface reflected LiDAR points are left to construct DEM while non-surface reflected LiDAR points need to be removed from the raw LiDAR data. In particular, the changes of input values for filtering algorithm-constructing parameters are supposed to produce different products. Therefore, this study is aimed to contribute to better understanding the effects of the changes of the levels of GroundFilter Algrothm's Mean parameter(GFmn) embedded in FUSION software on the accuracy of the LiDAR DEM products, using LiDAR data collected for Hwacheon, Yangju, Gyeongsan and Jangheung watershed experimental area. The effect of GFmn level changes on the products' accuracy is estimated by measuring and comparing the residuals between the elevations at the same locations of a field and different GFmn level-produced LiDAR DEM sample points. In order to test whether there are any differences among the five GFmn levels; 1, 3, 5, 7 and 9, One-way ANOVA is conducted. In result of One-way ANOVA test, it is found that the change in GFmn level significantly affects the accuracy (F-value: 4.915, p<0.01). After finding significance of the GFmn level effect, Tukey HSD test is also conducted as a Post hoc test for grouping levels by the significant differences. In result, GFmn levels are divided into two subsets ('7, 5, 9, 3' vs. '1'). From the observation of the residuals of each individual level, it is possible to say that LiDAR DEM is generated most accurately when GFmn is given as 7. Through this study, the most desirable parameter value can be suggested to produce filtered LiDAR DEM data which can provide the most accurate elevation information.

Determination of Physical Footprints of Buildings with Consideration Terrain Surface LiDAR Data (지표면 라이다 데이터를 고려한 건물 외곽선 결정)

  • Yoo, Eun Jin;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.503-514
    • /
    • 2016
  • Delineation of accurate object boundaries is crucial to provide reliable spatial information products such as digital topographic maps, building models, and spatial database. In LiDAR(Light Detection and Ranging) data, real boundaries of the buildings exist somewhere between outer-most points on the roofs and the closest points to the buildings among points on the ground. In most cases, areas of the building footprints represented by LiDAR points are smaller than actual size of the buildings because LiDAR points are located inside of the physical boundaries. Therefore, building boundaries determined by points on the roofs do not coincide with the actual footprints. This paper aims to estimate accurate boundaries that are close to the physical boundaries using airborne LiDAR data. The accurate boundaries are determined from the non-gridded original LiDAR data using initial boundaries extracted from the gridded data. The similar method implemented in this paper is also found in demarcation of the maritime boundary between two territories. The proposed method consists of determining initial boundaries with segmented LiDAR data, estimating accurate boundaries, and accuracy evaluation. In addition, extremely low density data was also utilized for verifying robustness of the method. Both simulation and real LiDAR data were used to demonstrate feasibility of the method. The results show that the proposed method is effective even though further refinement and improvement process could be required.

3D Visualization of Forest Information Using LiDAR Data and Forest Type Map (LiDAR 데이터와 임상도를 이용한 산림정보의 3차원 시각화)

  • Bang, Eun-Gil;Yoon, Dong-Hyun;Koh, June-Hwan
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.53-63
    • /
    • 2014
  • As recent interest in ecological resources increases, an effort in three-dimensional visualization of the ecological resources has increased for the restoration and preservation of the natural environment as well as the evaluation of the landscape. However, in the case of forest resources, information extraction has been active, but the effort in trying to apply that information into an effective visualization has not happened. In other words, the effort for effective visualization is lacking when it comes to the visualization of forest resources, and numerous cases are ether non-realistic or the simulation required for analysis is inappropriate. Therefore, this paper extracts information through the use of airborne LiDAR data, aerial photograph, and forest type maps to create a vegetation layer, and then uses Flora3D forest modeling tools and ArcGlobe to accurately visualize the vegetation layer into the three dimension. An effective application for restoration and preservation of ecological resources as well as analysis on the urban landscape can be considered as a result of intuitively and realistically enabling the user's awareness of forest information within the Geographic Information System.

The Evaluation of Architectural Density on Urban District using Airborne Laser Scanning Data (항공레이저측량 자료를 이용한 시가지 건축밀도 평가에 관한 연구)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Cho, Gi-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.95-106
    • /
    • 2003
  • This study evaluated the architectural density of urban district using airborne laser scanning(ALS) that is a method used in urban planning, water resources and disaster prevention with high interest recently. First, digital elevation model(DEM) and digital surface model(DSM) was constructed from Light detection and ranging(LiDAR). For getting the height of building, ZONALMEAN filter was used in DEM and ZONALMAJORITY filter was used in DSM. This study compared the floor from filtering with the floor from survey and got standard error, which is ${\pm}0.199$ floor. Also, through the overlay and statistical analysis of total-area layer and zone layer, we could present floor area ratio by zone. As a result of comparison with floor area ratio between airborne laser scanning data and survey data, the standard error of floor area ratio shows ${\pm}2.68%$. Therefore, we expect that airborne laser scanning data can be a very efficient source to decision makers who set up landuse plan in near future.

  • PDF

A Study on the Application of River Surveying by Airborne LiDAR (항공라이다의 하천측량 적용 방안 연구)

  • Choi, Byoung Gil;Na, Young Woo;Choo, Ki Hwan;Lee, Jung Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.25-32
    • /
    • 2014
  • The river plan executes the role for prevention of disaster and protection of environment, and requires the surveying results with high accuracies for managing river, dam, reservoir which will be the major infrastructures. The purpose of this study is for comparing and analyzing the results of river surveying which is used widely for disaster management and construction industry support. The results are gathered by using LiDAR which is being used in Korea recently and by using Total station. Study area is chosen at upper area of Bukhan River which is located at Gangwon-do. Total 2 cross-sections of the two methods are extracted from the study area. The standard deviation of land part is about 0.017m which shows little difference between two methods, but the Airborne LiDAR results cannot survey the heights of the points accurately at the singular points with vertical structure and water body part. To overcome the problems through this study, there should be ways to survey the bottom river through transmission of water level within the same margin scope as land part and to survey detailed facilities used by laser exactly through continuous research and experiment. When implementation stage comes, this study expect that this document will be utilized variously for making decision in the area of planning and drawing of business and engineering not just for river regarding the major area or the area that people cannot access.

GIS-Based Analysis of the Debris Flow Occurrence Possibility Using an Airborne LiDAR DEM around Pyeongchang-Gun, Kangwon-Do (항공라이다 DEM을 이용한 강원도 평창군 일원의 GIS 기반의 토석류 발생가능성 분석)

  • Lee, In-Ji;Lee, Dong-Ha;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.50-66
    • /
    • 2010
  • In this study, we performed a GIS-based debris flow simulation using the high-resolution airborne LiDAR DEM in order to establish the effective and resonable debris prevention plans in Korea. To do so, we set a study area to an specific region over Pyeochang-gun in Kangwon-do which showed the extreme rugged distribution of topography and simulated a possibility of debris flow occurrence in this area using a GIS-based numerical simulation program which was developed by applying the finite difference method. After that, we also performed the debris flow simulation by SINMAP and geomorphic analysis method in the same region and compared each result with that of GIS-based debris simulation for verifying the reliability.