Journal of information and communication convergence engineering
/
v.20
no.2
/
pp.96-102
/
2022
We aim to build predictive models for Airbnb's prices using a GPU-accelerated RAPIDS in a big data cluster. The Airbnb Listings datasets are used for the predictive analysis. Several machine-learning algorithms have been adopted to build models that predict the price of Airbnb listings. We compare the results of traditional and big data approaches to machine learning for price prediction and discuss the performance of the models. We built big data models using Databricks Spark Cluster, a distributed parallel computing system. Furthermore, we implemented models using multiple GPUs using RAPIDS in the spark cluster. The model was developed using the XGBoost algorithm, whereas other models were developed using traditional central processing unit (CPU)-based algorithms. This study compared all models in terms of accuracy metrics and computing time. We observed that the XGBoost model with RAPIDS using GPUs had the highest accuracy and computing time.
This study investigates key factors influencing customers' repurchase intention in the context of Airbnb. Positive and negative emotions formed after customer's first-hand experience are identified as vital antecedents in determining consumer's repurchase intention. This study posits authentic experience, amenities, and price fairness as the key characteristics of Airbnb. It clarifies the role of subjective norms and trend-seeking tendency in repurchase decisions. The proposed research model was analyzed for 306 customers with experience in using Airbnb via structural equation model. The analysis results showed that both positive and negative emotions have a significant effect on customer's repurchase intention. The results clarified the role of Airbnb's characteristic components on repurchase decisions. Finally, subjective norms and trend-seeking tendency had no significant impact on customer's repurchase intention. The results of this study are expected to help establish effective strategies for customer experience and marketing to achieve sustainable growth of Airbnb.
Park, Daeyeong;Yoon, Jiyoung;Jeong, Yunji;Kim, Byoungsoo
Journal of Digital Convergence
/
v.18
no.12
/
pp.231-242
/
2020
Due to fierce market competition and COVID-19, it becomes increasingly important for sharing economic platform companies to develop a long-term relationship with customers. In this regard, this study explores the mechanism of customer's repurchase decision making in the context of Airbnb. This study posits customer satisfaction and brand image as the key factors in forming customer's repurchase intention toward Airbnb. It also investigates the effects of price fairness, authentic experience, enjoyment, Airbnb trust and host trust on customer's repurchase intention. This study validated the research hypothesis with 154 customers using Airbnb. The analysis results showed that both customer satisfaction and brand image have a significant impact on repurchase intention and explain 62.0% of its variance. Enjoyment, true experience, and Airbnb trust had significant effects on customer satisfaction, while price fairness and host trust had no significant impact on it. The results revealed that price fairness, authentic experience, enjoyment, and Airbnb trust are significantly associated with brand image, while host trust is not significantly related to it. The results of this study are expected to provide academic and practical implications by enhancing the understanding of customer's repurchasing decision in the context of sharing economic platform.
Proceedings of the Korea Contents Association Conference
/
2019.05a
/
pp.211-212
/
2019
The objectives of this research are to test the utility of semiparametric geographically weighted regression (SGWR, a spatial analysis method) in the small-scale urban sample, and to understand the geographic patterns of provision and pricing of sharing economy based accommodations in the tourist city. This paper focused on how network distance to heritage site, to casino, residential unit prices and other five attribute categories determine Airbnb price in Macau SAR, China. Findings show that SGWR models outperformed OLS models. Moreover, comparing with heritage sites, casinos are the stronger factors to drive up Airbnb (including hostels) rooms' provision and their prices; and residential unit prices are not related with the Airbnb price in the attraction clusters in Macau. This research showed a little example for the applications of SGWR in the small city, and for the analysis of online marketplace data as new urban study material. Practically, this study provides some scientific evidence for hosts, guests, urban planners, and policymakers' decision making in Macau.
The purpose of this study is to examine how factors that select Airbnb service affect service satisfaction and the moderating effect according to marital status. The subjects of this study are customers who who have used Airbnb services in the metropolitan area. The questionnaire survey was conducted with 150 people, and the results were analyzed and hypothesis testing was performed using Structural Equation Model(SEM). As a result of the study, it has been found that price, online review, and Unique Experience Expectation(UEE) among the factors that selected Airbnb have positive effects on service use satisfaction. In addition, marital status has been found to play a mediating role among price, UEE and customer satisfaction. For single customers, price is an important factor influencing service satisfaction, but for married customers, it is not. In this sense, it is important not only to conduct marketing and promotions considering only gender, but also to provide services according to whether they are single or married.
The sharing economy is considered as a collaborative consumption which enables customers to share unused resources. This study investigated the key factors affecting consumer loyalty in the context of sharing accommodation. Emotions, perceived value and self-image consistency were posited as key antecedents of enhancing customer loyalty. Authentic experience, home amenities, and price fairness were also considered as Airbnb's selection attributes. Airbnb was selected a survey target because it is the largest company in the domain of shared accommodation market. The research model was analyzed for 294 Airbnb customer through structural equation models. Additionally, this paper examine Airbnb customers' experiences by topic modelling method posted on the Naver blog. Based on the understanding of the key factors affecting customer loyalty to sharing accommodation, the analysis results contribute to establish effective marketing and operation strategies by enhancing customer experience.
The Journal of Asian Finance, Economics and Business
/
v.7
no.3
/
pp.201-210
/
2020
The study aims to investigate determinants of performance indicator and perceptions of existing and potential customers in accommodation sharing. This study uses data of Airbnb in Busan and Jeju from January 1 to December 31 in 2018, provided by AirDNA. The total number of listed accommodation sharing were 5,109 accommodations in Busan and 11,502 accommodations in Jeju. More than 90 property types of registered accommodation are subcategorized and re-classified in this study. Study 1 examined current usage and effects of factors on performance indicator in tourism destinations by applying Airbnb data. Study 2 investigated effects of perceived factors on satisfaction, intention to use, loyalty, and tourism competitiveness by applying online survey data. This study applies statistical analyses such as factor and regression analyses, ANOVA, t-test, and MANOVA. Results of Study 1 showed that usage and effects of accommodation sharing differ from regulation that is related to sharing types. Effects also differ based on travel destinations. Results of Study 2 showed how customers perceive accommodation sharing differ from pure meaning of sharing. The results of Study 1 and 2 found significant effects of price and service factors on performance indicator and customer satisfaction. The findings of Study 2 showed significant effects on loyalty and tourism competitiveness.
Purpose: Technology induces the virtual distribution channel to exist, especially for booking a room online. This situation, indeed, provides an alternative for the customers to book based on their budget through digital platforms. One platform offering competitive prices is virtual hotel operators, such as Airbnb, OYO, RedDoorz, and Airy Rooms. Preferably, after using their platform, the user should be satisfied and loyal. Hence, this investigation aims to prove some associations. The first is between e-satisfaction and e-loyalty. The second is between website quality and e-satisfaction. The final is between website quality and e-loyalty. Research design, data, and methodology: This study is quantitatively designed with the sample of 350 users of the virtual hotel operator applications in Bandar Lampung: Airbnb, OYO, RedDoorz, and Airy, as the samples. Therefore, by denoting this sample size, the structural equation model based on covariance is utilized to examine the three hypotheses proposed. Also, to get the responses, this study uses a survey through a questionnaire. Result: This investigation demonstrates the positive relationship between e-satisfaction and e-loyalty. Additionally, website quality positively associates with e-satisfaction and e-loyalty. Conclusion: The virtual hotel operators must have the superiority on their website-based application to update the information based on the room availability and price, ensure online transaction safety, and facilitate its utilization to maintain long-term satisfaction and loyalty virtually.
International Journal of Advanced Culture Technology
/
v.9
no.2
/
pp.72-79
/
2021
This study is to develop a strategy to prepare an improvement strategy according to the environmental change of the hotel. Currently, domestic hotels are implementing marketing through food and beverage as a countermeasure against the sales decrease, and in order to develop effective marketing plan, 5 Force Model environmental analysis and STP analysis are analyzed. 5 Force Model Environmental Analysis showed that domestic hotels are facing various difficulties such as the expansion of accommodation sharing system, the decrease of Chinese tourists due to the THAAD problem, the increase of hotels, the introduction of PMS, the increase of minimum wage, the introduction of 52 hours work week, and the increase in product preference As an STP response strategy to correspond these difficulties, it is necessary to develop products for the main customers of the hotel food and beverage, such as those in the 20s-30s, the workers, smartphones and SNS users. And also hotels should seek ways to lower price of the product to the level desired by the user to compete against substitutes. In conclusion we suggest that hotels are committed to fulfilling their role by meeting guest safety and COVID-19 compliance requirements, but a focus on immediate cleanliness and quarantine against infectious diseases, like Airbnb, will enable greater growth.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.