• 제목/요약/키워드: Airbag

검색결과 127건 처리시간 0.025초

승합 및 경트럭의 탑승자 보호성능 평가 (Evaluation of Occupant Protection of Van and Light Truck Vehicle)

  • 김관희;박인송
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.13-19
    • /
    • 2012
  • The fatalities rate for passenger vehicles, vans, and commercial vehicles is 1.23, 1.90 and 2.46 deaths per 10,000 registered vehicles, respectively. This shows that vans and commercial vehicles are vulnerable compare to passenger vehicles. To evaluate the crashworthiness of van and Light Truck Vehicle(LTV), we carried out frontal offset crash test at 64km/h, 40% overlap as per IIHS(Insurance Institute for Highway Safety). The test result show that LTV is very poor to protect occupant at frontal crash cause there is no safety system such as airbag and pretensioner and front end length(distance from front bumper to steering wheel) is short. One of the van rated as the lowest rating even it is equipped with airbag, cause its safety cage was collapsed during the test. This result shows that the structural integrity is very important in terms of occupant protection.

Dynamic PIV를 이용한 커튼형 에어백 부품림 장치의 유동해석 (Dynamic PIV analysis of High-Speed Flow Ejected from the Inflator Housing of a Curtain-type Airbag)

  • 장영길;김석;이상준
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.407-408
    • /
    • 2006
  • Passenger safety is one of the most important considerations in the purchase of an automobile. A curtain-type air bag is increasingly adapted in deluxe cars for protecting passengers from the danger of side clash. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to pump up the air bag-curtain. Although the inflator housing is fundamental in designing a curtain-type air bag system, flow information on the inflator housing is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the airbag inflator housing in the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing was found to have large velocity fluctuations and the maximum velocity was about 700m/s. The velocity of high-speed flow was decreased rapidly and the duration of high-speed flow over 400m/s was maintained only to 30ms. After 100ms, there was no perceptible flow.

  • PDF

고안전 에어백의 승객 분류를 위한 체압감지 센서를 위한 알고리즘 개발 (Algorithm development of a body pressure detection sensor for the occupant classification system)

  • 윤득선;오성록;송정훈;김병수;부광석
    • 센서학회지
    • /
    • 제18권5호
    • /
    • pp.385-392
    • /
    • 2009
  • This paper describes the algorithm development of a new body pressure detection sensor for occupant classification system. U.S. Government has required that advanced airbag system should be installed to every automobiles after 2006 according to FMVSS 208 regulation. Therefore, Occupant Classification System should be provided the passenger with safety in order to protect the infants or children that sit in the front passenger seat. When an occupant sits on the chair of the vehicle, deployment of the airbag depends on passenger's weigh distribution and postures. Authors have been developed a new pattern recognition of passenger and weight distribution at the same time by Force Sensing Resistor for the safety.

사고분석 사례를 통한 사고기록장치 개선방안에 대한 고찰 (Study on the Improvement of Event Data Recorders through Accident Analysis)

  • 박기옥;강희진;전준호;김희준
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.66-72
    • /
    • 2021
  • This study was initiated to improve of the defect investigation method using event data recorders (EDR) and suggested a solution through the regulation and system analysis of EDR. The EDR data has been used for various purposes such as the vehicle defect investigation and the traffic accident investigation. However the EDR regulation has not been updated since the implementation in 2012. "Trigger Threshold" can be used to analyze a single accident such as the frontal crash, the side crash, and the rollover. In the case of a complex accident in which a rollover accident and a crash accident occur simultaneously, it is difficult to analyze a complex accident due to current "Trigger Threshold". This study proposed the method of separating the "Trigger Threshold" into a crash accident and a rollover accident so that accidents can be analyzed using the EDR data even when a complex accident occurs. In addition, it proposed the improvement method to quickly use the data of EDR in accident reconstruction software.

Dynamic and static structure analysis of the Obermeyer gate under overflow conditions

  • Feng, Jinhai;Zhou, Shiyue;Xue, Boxiang;Chen, Diyi;Sun, Guoyong;Li, Huanhuan
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.209-217
    • /
    • 2022
  • In order to analyze the static and dynamic structural characteristics of the Obermeyer gate under overflow conditions, the force characteristics and vibration characteristics of the shield plate structure are studied based on the fluid-solid coupling theory. In this paper, the effects of the flow rate, airbag pressure and overflow water level on the structural performance of shield plate of air shield dam are explored through the method of controlling variables. The results show that the maximum equivalent stress and total deformation of the shield plate decrease first and then increase with the flow velocity. In addition, they are positively correlated with the airbag pressure. What's more, we find that the maximum equivalent stress of the shield plate decreases first and then increases with the overflow water level, and the total deformation of the shield plate decreases with the overflow water level. What's more importantly, the natural frequency of the shield structure of the Obermeyer gate is concentrated at 50 Hz and 100 Hz, so there is still the possibility of resonance. Once the resonance occurs, the free edge of the shield vibrates back and forth. This work may provide a theoretical reference for the safe and stable operation of the shield of the Obermeyer gate.

착용형 에어백의 충격력 시험 방법개발 및 평가 (Development and Evaluation of an Impulsive Force Test Method for Wearable Airbags)

  • 박진오;김영진
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.597-602
    • /
    • 2021
  • 4차 산업혁명의 시대에서도 여전히 산업 재해 예방은 산업 현장에서 중요한 문제이다. 그런데, 산업 안전의 문제를 해결하는 과정에서 개발된 제품이 신뢰성 있는 성능평가에 대한 기준이나 방법의 부재로 시장 출시에 대한 어려움이 큰 상황이다. 본 연구의 목적은 산업 현장에서 추락 사고에 대응하기 위해 새롭게 개발된 추락 인체 보호용 착용형 에어백 제품에 대한 시험 방법개발 및 평가이다. 연구 방법으로는 기존에 없는 융합 신제품 평가개발 process 4단계(1단계: 제품검토, 2단계: 자료조사, 3단계: 전문가 회의, 4단계: 평가기준도출)를 통해 신뢰성 있는 평가 기준을 개발하고 적용하였다. 또한 개발된 평가 기준에 따라 추락 인체 보호용 착용형 에어백 소재에 대한 충격력을 평가하였다. 평가로 얻어진 추락 충격력은 기존 충격력 대비 96% 정도의 감소 효과를 나타내어 에어백 적용 시 추락 충격력이 현저히 줄어듦을 확인할 수 있었다. 이를 통해 융합 신제품이 시장 출시를 할 수 있도록 하였으며, 산업 현장 근로자가 안전하게 작업할 수 있는 환경을 조성하게 될 것으로 보인다.

에어백용 압저항형 외팔보 미소 가속도계의 설계, 제작 및 시험 (Design, Fabricaiton and Testing of a Piezoresistive Cantilever-Beam Microaccelerometer for Automotive Airbag Applications)

  • 고종수;조영호;곽병만;박관흠
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.408-413
    • /
    • 1996
  • A self-diagnostic, air-damped, piezoresitive, cantilever-beam microaccelerometer has been designed, fabricated and tested for applications to automotive electronic airbag systems. A skew-symmetric proof-mass has been designed for self-diagnostic capability and zero transverse sensitivity. Two kinds of multi-step anisotropic etching processes are developed for beam thickness control and fillet-rounding formation, UV-curing paste has been used for sillicon-to-glass bounding. The resonant frequency of 2.07kHz has been measured from the fabricated devices. The sensitivity of 195 $\mu{V}$/g is obtained with a nonlinearity of 4% over $\pm$50g ranges. Flat amplitude response and frequency-proportional phase response have been obserbed, It is shown that the design and fabricaiton methods developed in the present study yield a simple, practical and effective mean for improving the performance, reliability as well as the reproducibility of the accelerometers.

EVALUATION OF DYNAMIC TENSILE CHARACTERISTICS OF POLYPROPYLENE WITH TEMPERATURE VARIATION

  • Kim, J.S.;Huh, H.;Lee, K.W.;Ha, D.Y.;Yeo, T.J.;Park, S.J.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.571-577
    • /
    • 2006
  • This paper deals with dynamic tensile characteristics for the polypropylene used in an IP(Instrument Panel). The polypropylene is adopted in the dash board of a car, especially PAB(Passenger Air Bag) module. Its dynamic tensile characteristics are important because the PAB module undergoes high speed deformation during the airbag expansion. Since the operating temperature of a car varies from $-40^{\circ}C$ to $90^{\circ}C$ according to the specification, the dynamic tensile tests are performed at a low temperature($-30^{\circ}C$), the room temperature($21^{\circ}C$) and a high temperature($85^{\circ}C$). The tensile tests are carried out at strain rates of six intervals ranged from 0.001/sec to 100/sec in order to obtain the strain rate sensitivity. The flow stress decreases at the high temperature while the strain rate sensitivity increases. Tensile tests of polymers are rather tricky since polymer does not elongate uniformly right after the onset of yielding unlike the conventional steel. A new method is suggested to obtain the stress-strain curve accurately. A true stress-strain curve was estimated from modification of the nominal stress-strain curves obtained from the experiment. The modification was carried out with the help of an optimization scheme accompanied with finite element analysis of the tensile test with a special specimen. The optimization method provided excellent true stress-strain curves by enforcing the load response coincident with the experimental result. The material properties obtained from this paper will be useful to simulate the airbag expansion at the normal and harsh operating conditions.

2샷 사출 압축 소프트 인스트루먼트 패널 개발 (Development of Two-Shot Injection-Compression Soft Instrument Panel)

  • 공병석;박동규
    • 한국산학기술학회논문지
    • /
    • 제20권2호
    • /
    • pp.638-643
    • /
    • 2019
  • 자동차 소프트 인스트루먼트 패널의 비용과 중량을 줄이기 위하여 두 가지 사출을 동시에 수행하는 방법을 이용한 새로운 인스투르먼트 패널이 개발되었다. 첫 번째 사출은 뒷면 발포체 포일을 삽입하는 압축 사출을 하는 방법이고, 다른 하나는 동승석 에어백에 도어와 동시에 2샷 사출하는 방법이다. 우리는 그것을 'IMX-IP'라고 부르며, 이것은 인스트루먼트 패널의 모든 부품들이 종류가 다른 수지와 하나의 금형 안에서 만들어지는 방법인 것이다. 본 기술의 개발 과정은 (1) TRIZ 기법을 이용한 새로운 사출 금형 설계, (2) 사출 조건의 최적화와 폼의 손실과 두께 편차를 최소화하기 위한 뒷면 발포체 포일의 최적화, (3) 2샷 사출 압축에 대한 CAE 해석 검증, (4) 신뢰성 검증 시험과 양산에의 적용 순서로 이루어져 있다. 뒷면 발포체 포일 삽입을 이용한 2샷 사출을 통한 공정 감소는 개발비와 중량 절감과 함께 소프트 인스투루먼트 패널의 부드러운 느낌을 향상시키는 것을 가능하게 하였다.

2011 KNCAP 측면충돌 및 기둥측면충돌 시험결과 고찰 (A Consideration on the Results of Side Impact and Pole Side Impact Tests in 2011 KNCAP)

  • 이동준;최영태;이광원;임재문
    • 자동차안전학회지
    • /
    • 제3권2호
    • /
    • pp.22-27
    • /
    • 2011
  • The side impact test in the Korean New Car Assessment program (KNCAP) has been conducted since 2003. The side impact test method has been contributed to the improvement of the vehicle side structure and the enhancement of the occupant protection performance for the domestic vehicles. The pole side impact test method introduced in the KNCAP in 2010 to enhance the head protection under the severe side crash environment. The pole side impact test is optional for the additional score to be added to the overall rating score. The test results of side and pole side impact test for five vehicles were introduced and compared.