• Title/Summary/Keyword: Air-to-Water Heat Pump System

Search Result 224, Processing Time 0.025 seconds

Study on Heating Performance of Hybrid Heat Pump System Using Geothermal Source and Solar Heat for Protected Horticulture (시설원예용 지열 및 태양열 이용 하이브리드 히트펌프 시스템의 난방성능에 관한 연구)

  • Jeon, Jong Gil;Lee, Dong Geon;Paek, Yee;Kim, Hyung Gweon
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.49-56
    • /
    • 2015
  • In this study a hybrid heating system based on geothermal source and solar heat was developed in order to save energy for greenhouse heating and its field performance was evaluated. Developed system are composed of following parts: water tank, heat exchanger, heat pump, fan coil unit and heat storage unit. The working performance test was carried out in a greenhouse cultivating oriental orchids being managed by $23^{\circ}C$. Field performance test results showed that average heating coefficient of performance ($COP_h$) was 3.4 for the period from mid-January to mid-March 2013. Heating coefficient of performance ($COP_h$) of developed hybrid heat pump system was more sensitive to water tank temperature than outside air temperature. This study showed that developed hybrid heat pump system has a potential to save the heating costs up to 91% compared to conventional agricultural oil heaters.

Simulation on the Optimal Performance and Effective Operating Range of a 2-Stage Compression Heat Pump Using River Water (하천수 열원 이용 2단압축 열펌프의 최적성능 및 효용 운전범위에 관한 시뮬레이션 연구)

  • Jung, Tae-Hun;Park, Cha-Sik;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.295-303
    • /
    • 2008
  • The objectives of this study are to predict actual system performance and effective operating range of the 2-stage compression heat pump system using river water. An electronic expansion valve was applied to the simulation to analyze the effects of operating conditions on the system performance. The developed program was verified by comparing the predictions with the measured data. The results from the present model showed a good agreement with the measured data. In addition, the heat pump simulation was conducted by increasing condenser reservoir inlet temperature to investigate the benefits of the 2-stage compression over the 1-stage compression in the heating mode. The performance of the 2-stage compression cycle was better than that of the 1-stage compression when the inlet temperature of the condenser reservoir was higher than $40^{\circ}C$.

An Experimental Study on Applying Heat Pump System to Facility Horticulture House (히트펌프 시스템의 시설원예 적용에 관한 실험적 연구)

  • Kim, Jae-Dol
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.88-94
    • /
    • 2013
  • As the results of analysis that are applying a heat pump using underground water as heat source of facility horticulture house, temperature change in house, growth of cultivated plants and the crop characteristic, the conclusion can be acquired as follows. It was possible to maintain the chamber temperature through operating heat pump with setting goal temperature at $16^{\circ}C$ and temperature variation at ${\pm}3^{\circ}C$. And cooling and heating coefficient of performance in heat pump system are different from setting room temperature and operation condition of equipment, totally in case that the setting temperature in house is low, the coefficient of performance and the in case that temperature departure is low. In case that the house does not heated, the result of the growth characteristic of cucumber planted last 50days is that cucumber grown in house equipped with heat pump is the most favorable growth characteristic due to maintaining a constant room temperature. After 90 days, the quantity and weight cucumber harvested in each house are averagely 9.8%, 13.1% increase and more heavy weight respectively. So it is researched that crop characteristic is superior.

Capacity Modulation of a Multi-Type Heat Pump System using PID Control with Fuzzy Logic (퍼지 로직 적용 PID 제어를 이용한 멀티형 열펌프의 용량조절)

  • 김세영;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.810-817
    • /
    • 2001
  • Performance of a water-to-water multi-type heat pump system using R22 which has tow indoor units has been investigated experimentally. The refrigerant flow rate of each indoor unit was regulated by an electronic expansion valve and the total refrigerant flow rate of the system was controlled by a variable speed compressor. In the system, evaporator outlet pressure of refrigerant and outlet temperatures of secondary fluid from indoor units were selected as control variables. Experiments were executed for both cooling and heating modes using PID control method with fuzzy logic, and results of the test are compared with a classical PID method. In the case of PID control with fuzzy logic, the fuzzy control rules corrects PID parameters each time. Results show that PID control with fuzzy logic has the merits of quick response and reduced overshoot.

  • PDF

Compute simulation of a three-stage condensation heat pump (3단 응축 고온/고효율 열펌프의 전산해석)

  • 이윤학;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.303-314
    • /
    • 1998
  • In this study, the performance of a multi-stage condensation heat pump was examined. Computer simulation programs were developed for 1-stage, 2-stage, and 3-stage heat pumps and R11, R123, R141b were tested as working fluids. The results showed that coefficients of performance(COPs) of an optimized 3-stage condensation heat pump are 25∼40% higher than those of a conventional 1-stage heat pump. The increase in COP, however, differed among the fluids tested. The improvement in COP largely stems from the decrease in average LMTD values in the condensers of the multi-stage system. For the 3-stage condensation heat pumps, optimized UA values of three condensers were determined to be 30∼40% of the UA value of the total condenser regardless of the working fluid. When the amount of cooling water entering into the intermediate and high-stage subcoolers is roughly 10% of the total condenser cooling water respectively, the optimum performance was achieved for the 3-stage condensation heat pump.

  • PDF

Cooling and Heating Performance Under the Actual Operating Condition of a Ground Source Heat Pump System in a School Building (학교 건물에 설치된 지열원 열펌프 시스템의 실사용을 통한 냉난방성능 연구)

  • Kim, Eui-Young;Jeong, Young-Man;Song, Jae-Do;Lee, Jae-Keun;Kim, In-Kyu;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.586-589
    • /
    • 2009
  • This paper presents the performance of a water-to-refrigerant type ground source heat pump (GSHP) system installed in a school building in Korea. For analyzing the performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the input power of the GSHP system. The average cooling coefficient of performance (COP) of the heat pump was found to be 8.5 at 60% partial load condition, while the overall system COP was found to be 5.9. The average heating COP of the heat pump was found to be 6.5 at 45% partial load condition, while the overall system COP was found to be 5.0.

  • PDF

Study on the Utilization of Drinking Water Supply System of Air-water Heat Pumps Applicable to Laying Hen (산란계에 적용 가능한 공기-물 히트펌프의 음용수 공급시스템 이용기술에 관한 연구)

  • Paek, Yee;Kang, Suk-Won;Jang, Jae-Kyung;Kwon, Jin-Kyung
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.917-923
    • /
    • 2018
  • The drinking water supply system applicable to the laying hen consists of air-water heat pumps, drinking water tanks, heat stroage tank, circulation pumps, PE pipes, nipples, and control panels. When the heat pump system has power of 7.7 to 8.7 kW per hour, the performance coefficient is between 3.1 and 3.5. The supply temperature from the heat pump to the heat stroage tank was stabilized at about $12{\pm}1^{\circ}C$, but the return temperature showed a variation of from 8 to $14^{\circ}C$. Stratified temperature in the storage tank appeared at $12.^{\circ}C$, $13.5^{\circ}C$ and $14.4^{\circ}C$, respectively. The drinking water supply temperature remained set at $15^{\circ}C$ and $25^{\circ}C$, and the conventional tap water showed a variation for $23^{\circ}C$ to $30^{\circ}C$. As chickens grow older, the amount of food intake and drinking water increased. $y=-0.0563x^2+4.7383x+8.743$, $R^2=0.98$ and the feed intake showed $y=-0.1013x^2+8.5611x$. In the future, further studies will need to figure out the cooling effect on heat stress of livestock.

An Experimental Study on the Cooling Operation Characteristics for Different Entering Water Temperatures In Geothermal Heat Pump System (지열히트펌프 시스템의 EWT의 변화에 따른 냉방운전 특성에 관한 실험적 연구)

  • Ahn, Byung-Chun;Kim, Jae-Wan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, an experimental study on the cooling operation characteristics for different entering water temperatures in geothermal heat pump system are carried out by using Lab VIEW system program Set-point temperature controls for cooling water and supply air temperatures is applied to analyze the energy consumption and control performances. As a result, the system responses show that different entering water temperatures(EWT) effect greatly on the energy consumption and system COP.

An Experimental Study on the Optimal Intermediate Pressure of a 2-Stage Compression Heat Pump Using River Water (하천수 열원 2단압축 열펌프의 최적 중간압에 관한 실험적 연구)

  • Park, Cha-Sik;Jung, Tae-Hun;Joo, Young-Ju;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.6
    • /
    • pp.333-339
    • /
    • 2009
  • The objective of this study is to predict optimal intermediate pressure of a 2-stage compression heat pump system using river water. To determine the maximum performance of the 2-stage compression heat pump system, the experimental evaluations on the 2-stage compression cycle were carried out under various operating conditions. Electronic expansion valves were applied to control intermediate pressure and superheat. Based on the experimental data, an empirical correlation for predicting optimal intermediate pressure which considering cycle operating parameters was developed. The present correlation was verified by comparing the predicted data with the measured data. The predictions showed a good agreement with the measured data within a relative deviation of ${\pm}4%$ at various operating conditions.

Thermodynamic Analysis of Double-effect Absorption Heat Pump System with New Working Pairs (작동매체에 따른 2중효용 흡수식 시스템의 성능해석)

  • Won, S.H.;Lee, Y.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.250-255
    • /
    • 1991
  • Performance analysis of double-effect absorption heat pump system has been done to find improved working pairs (or mixture) by computer simulation. Based on the thermodynamic analysis, the coefficient of performance and mass flow ratio are investigated to compare three aqueous solutions [LiCl-water, LiSCN-LiBr-water, LiCl-$CaCl_2$-$Zn(NO_3)_2$-water] which was developed for only cooling, with conventional LiBr-water solution. It is found that the performances of the new aqueous solutions are better than that of LiBr-water solution not only in cooling systems, but also in heating systems. Theoretical thermodynamic performance data can be used in heat recovery systems by basic design data.

  • PDF