• Title/Summary/Keyword: Air-temperature difference

Search Result 1,302, Processing Time 0.031 seconds

Air Temperature Modification of an Urban Neighborhood Park in Summer - Hyowon Park, Suwon-si, Gyeonggi-do- (여름철 도시근린공원의 기온저감 효과 - 경기도 수원시 효원공원 -)

  • Park, Sookuk;Jo, Sangman;Hyun, Cheolji;Kong, Hak-Yang;Kim, Seunghyun;Shin, Youngkyu
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1057-1072
    • /
    • 2017
  • In order to investigate the effect of air temperature reduction on an urban neighborhood park, air temperature data from five inside locations (forest, pine tree, lawn, brick and pergola) depending on surface types and three outside locations (Suwon, Maetan and Kwonsun) depending on urban forms were collected during the summer 2016 and compared. The forest location had the lowest mean air temperature amongst all locations sampled, though the mean difference between this and the other four locations in the park was relatively small ($0.2-0.5^{\circ}C$). In the daytime, the greatest mean difference between the forest location and the two locations exposed to direct beam solar radiation (brick and lawn) was $0.5-0.8^{\circ}C$ (Max. $1.6-2.1^{\circ}C$). In the nighttime, the mean difference between the forest location and the other four locations in the park was small, though differences between the forest location and locations with grass cover (pine tree and lawn) reached a maximum of $0.9-1.7^{\circ}C$. Comparing air temperature between sunny and shaded locations, the shaded locations showed a maximum of $1.5^{\circ}C$ lower temperature in the daytime and $0.7^{\circ}C$ higher in the nighttime. Comparing the air temperature of the forest location with those of the residential (Kwonsun) and apartment (Maetan) locations, the mean air temperature difference was $0.8-1.0^{\circ}C$, higher than those measured between the forest location and the other park locations. The temperatures measured in the forest location were mean $0.9-1.3^{\circ}C$ (Max. $2.0-3.9^{\circ}C$) lower in the daytime than for the residential and apartment locations and mean $0.4-1.0^{\circ}C$ (Max. $1.3-3.1^{\circ}C$) lower in the nighttime. During the hottest period of each month, the difference was greater than the mean monthly differences, with temperatures in the residential and apartment locations mean $1.0-1.6^{\circ}C$ higher than those measured in the forest location. The effect of air temperature reduction on sampling locations within the park and a relatively high thermal environment on the urban sampling locations was clearly evident in the daytime, and the shading effect of trees in the forest location must be most effective. In the nighttime, areas with a high sky view factor and surface types with high evapotranspiration potential (e.g. grass) showed the maximum air temperature reduction. In the urban areas outside the park, the low-rise building area, with a high sky view factor, showed high air temperature due to the effect of solar (shortwave) radiation during the daytime, while in the nighttime the area with high-rise buildings, and hence a low sky view factor, showed high air temperature due to the effect of terrestrial (longwave) radiation emitted by surrounding high-rise building surfaces. The effect of air temperature reduction on the park with a high thermal environment in the city was clearly evident in the daytime, and the shading effect of trees in the forest location must be most effective. In the nighttime, areas with high sky view factor and surface types (e.g., grass) with evapotranspiration effect showed maximum air temperature reduction. In the urban areas outside the park, the high sky view factor area (low-rise building area) showed high air temperature due to the effect of solar (shortwave) radiation during the daytime, but in the nighttime the low sky view factor area (high-rise building area) showed high air temperature due to the effect of terrestrial (longwave) radiation emitted surrounding high-rise building surfaces.

Performance Analysis of R404A Refrigeration System with Internal Heat Exchanger Using R744 as a Secondary Refrigerant (R744를 2차 냉매로 사용하는 내부열교환기 부착 R404A 냉동시스템의 성능 분석)

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Yi, Wen-Bin;Jeon, Min-Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.548-554
    • /
    • 2013
  • A thermodynamic analysis of the R404A refrigeration system with an internal heat exchanger using R744 as a secondary refrigerant is presented in this paper to optimize the design for operating parameters of the system. The main results are summarized as follows: The COP increases with increasing subcooling and superheating degree of R404A, internal heat exchanger and compression efficiency of the R404A cycle and evaporating temperature of the R744 cycle and decreasing temperature difference of the cascade heat exchanger and condensing temperature of the R404A cycle. The mass flow ratio decreases with increasing evaporating temperature of the R744 cycle and internal heat exchanger efficiency of the R404A cycle and decreasing subcooling and superheating degree of the R744 cycle, temperature difference of the cascade heat exchanger and condensing temperature of the R404A cycle.

Characteristic of Thermal Output of Thermally Activated Building System During the Heating Operation According to FDM Analysis (FDM 해석에 의한 구체축열시스템(TABS)의 난방운전시 방열 특성 분석)

  • Lim, Jae-Han;Song, Jin-Hee;Koo, Bo-Kyoung;Song, Seung-Yeong;Senog, Yoon-Bok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • This study is focused on the evaluation of thermal output of TABS (Thermally Activated Building System). The aim of this study is to evaluate TABS in terms of the temperature difference between heating medium supply temperature ($T_s$) and return temperature ($T_r$), thermal output and the surface temperature distribution according to the design flow rate and the design flow temperature. Through the transient heat transfer simulation using temperature calculation using Crank-Nicolson FDM using Physibel Voltra 6.0 W, the temperature difference between $T_s$ and ��$T_r$, thermal output and the surface temperature distribution of specific TABS was calculated and evaluated. The results show that specific thermal output and temperature difference at $60^{\circ}C$ of supply water temperature were about 162 $W/m^2$, $13.6^{\circ}C$ respectively.

The Effects of Urban Forest on Summer Air Temperature in Seoul, Korea (도시림의 여름 대기온도 저감효과 - 서울시를 대상으로 -)

  • 조용현;신수영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.28-36
    • /
    • 2002
  • The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the Oafnc facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperahne, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field swey of summer air temperature be Performed for the vadidation of the models. The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the traffic facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperature, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field survey of summer air temperature be Performed for the vadidation of the models.

The effect of the number of nozzle holes on the energy separation (보텍스튜브의 노즐홀수가 에너지분리에 미치는 영향)

  • 유갑종;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.692-699
    • /
    • 1999
  • The vortex tube is a sample device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. The phenomena of energy separation through the vortex tube were investigated experimentally, to see the effects of the number of nozzle holes on the energy separation. The experiment was carried out with the number of nozzle holes from 1 to 10 by varying inlet pressure and cold mass fraction. The experimental results were indicated that the effective number of nozzle holes for the best cooling performance was found as 4. Also, to find effective use in a given operation conditions, the temperature difference of cold air and the cooling capacity of vortex tube was compared. The result is that cooling capacity was more important than temperature difference of cold air.

  • PDF

The Study on Indoor Thermal Environment during Convection Heating - Thermal Comfort Sensation for Vertical Temperature Differences - (대류 난방시 실내열환경에 관한 연구 -상하온도차에 대한 온열쾌적감-)

  • Kim Dong-Gyu;Kum Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.215-220
    • /
    • 2005
  • Thermal neutrality is not enough to achieve thermal comfort. The temperature level can be the optimal, and still people may complain. This situation is often explained by the problem of local discomfort. Local discomfort can be caused by radiant asymmetry, local air velocities, too warm and too cold floor temperature and vertical temperature difference. This temperature difference may generate thermal discomfort due to different thermal sensation in different body parts. Therefore, thermal comfort can not be correctly evaluated without considering these differences. This study investigates thermal discomfort sensations of different body parts and its effect on overall thermal sensation and comfort in air-heating room. Experimental results of evaluating thermal discomfort at different body parts in an air-heating room showed that thermal sensation on the shoulder was significantly related to the overall thermal sensation and discomfort. Although it is known that cool-head, warm-foot condition is good for comfort living, cool temperature around the head generated discomfort.

The Changes of Meteorological Environment by Urban Development (대규모 도시 재개발에 따른 기상환경변화)

  • Kim, Geun-Hoi;Kim, Yeon-Hee;Koo, Hae-Jung;Kim, Kyu-Rang;Jung, Hyun-Sook
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • Urbanization affects the local thermal environment due to the large scale land use changes. To investigate the weather environment change of large scale urban redevelopment, 9 surface temperature and humidity observations were accomplished at Eunpyeong new town area. The observation period is from March 2007 to February 2010. In the center of development area, the air temperature has increased and relative humidity has decreased, by the changes of the land cover and building construction. In the area where the green zone is maintained, air temperature and relative humidity were not changed significantly. The air temperature and relative humidity for the other development observation stations is decreased and increased, respectively. The relative temperature difference between study area and a neighboring rural location was increased during observation periods. The difference is the highest during winter. The urban-rural minimum temperature difference was increased at development area, which means that urbanization affects increasing of minimum temperature in study area.

Heating Efficiency of the Underground Heat Exchanger by Different Pipe Materials (지열교환기의 배관자재에 따른 난방효율 분석)

  • 오인환;이준학;정우철
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.127-136
    • /
    • 1998
  • To use the earth heat for the livestock housing, an underground heat exchanger is developed and pipes are layed in the depth of 2.5m under the ground. The pipes have two different kinds of diameter (200mm, 100mm) and materials (PE, PVC). The results of heating effect in winter and spring are following. The temperature in different soil depth varies from 5$^{\circ}C$ by 1.5m depth, to 9$^{\circ}C$ by 3.5m. So it should be better to have the depth greater than 2.5m. The difference of air temperature between the inside and outside pipe was 9.9 Kelvin(K) with 200mm diameter and 13.4K with the 100mm diameter with the same material in winter. By the lower outside temperature from -7.2$^{\circ}C$, it could keep the air temperature above 6$^{\circ}C$ through the 100mm diameter pipe. The heating performance was 593 W with 200mm diameter, 118W with 100mm diameter (PE), and 115W with 100m diameter (PVC), respectively. As the outside temperature varies from -1.5$^{\circ}C$ to 18.6$^{\circ}C$ in early spring, the air temperature through the pipes show 4∼8$^{\circ}C$. While the difference between maximum and minimum outside temperature is 14K, the one through the pipes could be reduced by 2K. Pipes with small diameter can more reduce the difference than the pipe with larger diameter.

  • PDF

Natural Convection for Air-Layer between Body Skin and Clothing with Considering Coefficient of Permeability (투과계수를 고려한 의복과 인체 사이의 공기층에서 자연대류 특성)

  • 지명국;배강렬;정효민;정한식;추미선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1282-1287
    • /
    • 2001
  • This study presents the numerical analysis of natural convection of a micro- environments with air permeability in the clothing air-layer. As a numerical model the clothing air layer of shoulder and arm were adopted. Finite volume method for two-dimensional laminar flow was used for the analysis of flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As temperature boundary conditions, a body skin has a high temperature with $34^{\circ}C$ and the environmental temperatures are 5, 15 and $25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity are shown that two large cells form at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decreases, the heat transfer is decreased rapidly.

  • PDF

Suggestion for a New Exergy-Based Heat-Tariff Assessment for a District-Heating System (엑서지를 이용한 지역난방 열요금 제도 제안)

  • Moon, Junghwan;Yoo, Hoseon;Lee, Jae-Heon;Moon, Seungjae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.202-211
    • /
    • 2017
  • In this study, the exergy that can be reflected in the energetic and economic values was used to assess the heat tariff of a district heating (DH) system instead of the enthalpy. It is difficult to directly apply the exergy to the current heat-charge system because of the complicated calculation; therefore, the difference between the supply and return temperatures was converted to the exergy-temperature difference for the ease of the heat-amount calculation. As a result of the exergy analysis for a DH substation, the exergy-temperature difference did not affect the surrounding temperature and pressure loss. The supply temperature and the maximum difference between the supply temperature and the return temperature exerted the main effect on the exergy-temperature difference. The new heat charge of a DH user was slightly reduced in winter compared with the previous charge, but the heat charges in the other seasons are almost the same. It is concluded from the assessment of the heat tariff for which the exergy is used that this tariff is more feasible for both DH suppliers and consumers compared with enthalpy.