• 제목/요약/키워드: Air-spring

검색결과 837건 처리시간 0.027초

철도차량용 공기스프링 신뢰성 평가기준 및 시험 (Reliability Evaluation of Air Spring for Railway Vehicle)

  • 우창수;김완두;김석원;김영구
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.597-603
    • /
    • 2003
  • Air spring system in railway vehicles primarily ensure the air suspension of the vehicle body. The low natural frequency ensures a comfortable ride and an invariably good stiffness. In this paper, the characteristics and durability test was conducted in laboratory by using servo-hydraulic fatigue testing system to reliability evaluation of air spring for electric railway vehicle. The experimental results show that the characteristics and durability of domestic development productions are obtained the good results.

  • PDF

멀티 오리피스를 이용한 에어스프링 동특성 개선에 관한 연구 (The Study on the improvement of dynamic characteristics with multi-orifice in airspring)

  • 김인수;황성호;한문성;고철수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.97-103
    • /
    • 2002
  • Vibration isolation technology using an air spring and laminated rubber bearing is widely used because it has excellent vibration isolation characteristics. In the part of that, we usually make use of the self-damped air suing. It is occupied two chambers, restrictor, diaphragm and load plate. Two chambers contain compressed air and the volume of chambers and the area of load plate give a definition of stiffness and load. The restrictor and the volume ratio of two chambers give a definition of damping ratio. The conventional model of restrictor is made of one orifice and it causes turbulent flow in the orifice at the region of large deflection. The stillness of air suing is larger and the damping is lower in the region of large deflection. In the multi-orifice case, the stiffness is similar to air spring with one orifice but damping ratio is larger than conventional air spring. And damping ratio is smaller than conventional air suing in small deflection region. Deflection is small in the region of high frequency so small damping is better than large damping. As a result, we can reduce the storage stiffness of air suing in the wide region of deflection and increase the damping ratio in the region of large deflection. After this, we will try to and the relation of Reynolds Number and Flow Resistance then we are going to make another restrictor for air spring to improve damping ratio and stiffness.

  • PDF

철도차량용 공기스프링 신뢰성 시험 및 평가 (Reliability Test and Evaluation of Air Spring for Railway Vehicle)

  • 우창수;김완두;이학주;정승일
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제5권1호
    • /
    • pp.149-165
    • /
    • 2005
  • Air spring system was accepted for railway vehicle secondary suspension to reduce and absorb the vibration and noise. The low natural frequency ensures a comfortable ride and an invariably good stiffness. In this paper, the characteristics and durability test was conducted in laboratory by using servo-hydraulic fatigue testing system to reliability evaluation of air spring for electric railway vehicle. The experimental results show that the characteristics and durability of domestic development productions are obtained the good results. And to guarantee the adaption of air spring, the ride comfort and air pressure variation were measured in train test on subway line.

  • PDF

철도차량용 공기스프링의 신뢰성 평가 (Reliability Evaluation of Air Spring for Railway Vehicle)

  • 김완두;우창수;최경진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.807-819
    • /
    • 2002
  • The air spring is used in secondary suspension system for railway vehicle to reduce and absorb the vibration and noise. In this paper, the characteristics and durability test was conducted in laboratory by using servo hydraulic fatigue testing system to evaluate the reliability. And to guarantee the adaptation of this air spring, the ride comfort and air pressure variation were measured in train test. The experimental results show that the characteristics and durability of domestic development productions are obtained the good results and the stiffness of the air spring which had become 6 year over increased. Also, the dynamic characteristics of domestic and existing product agree well the results obtained.

  • PDF

상용차용 HILS기반 능동형 공기현가 시스템의 가상 Components 개발에 관한 연구 (Study on Development of Virtual Components for Active Air Suspension System Based on HILS for Commercial Vehicle)

  • 고영진;박경민;백일현;김근모;이재규
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.26-36
    • /
    • 2013
  • Purpose of this study is to develop virtual components and environment for developing a controller of an Active Air Suspension System in laboratory that slough off existing development environment using real vehicle test. This paper presents an air spring modeling and analysis of air suspension system for a commercial vehicle. Preferentially, It was performed vehicle test for pneumatic system and an air spring for characteristic analysis of system. Each component of an air spring suspension system was developed through emulations and modeling of system for pressure and height sensors in the basis on test results in SILS environment. Non-linear characteristics of air spring are accounted for using the measured data. Also, pressure and volume relations for vehicle hight control is considered. After performance verification of virtual model was performed, we developed virtual environment based on HILS for an Active Air Suspension System. We studied estimation and verification technology for control algorithm that developed.

자동차 현가장치를 위한 에어스프링 보강코드의 최적 성능평가 (Optimum Evaluation of Reinforcement Cord of Air Spring for the Vehicle Suspension System)

  • 김병수;문병영
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.357-362
    • /
    • 2011
  • Air springs are prevalently used as suspension in train. However, air springs are seldom used in automobiles where they improve stability and comfort by enhancing the impact-relief, breaking, and cornering performance. Thus, this study proposed a new method to analyze air springs and obtained some reliable design parameter which can be utilized in vehicle suspension system in contrast to conventional method. Among air spring types of suspension, this study focused on sleeve type of air spring as an analysis model since it has potential for ameliorating the quality of automobiles, specifically in its stability and comfort improvement by decreasing the shock through rubber sleeve. As a methodology, this study used MARC, as a nonlinear finite element analysis program, in order to find out maximum stress and maximum strain depending on reinforcement cord's angle variation in sleeves. The properties were found through uniaxial tension and pure shear test, and they were developed using Ogden Foam which is an input program of MARC. As a result, the internal maximum stresses and deformation according to the changes of cord angle are obtained. Also, the results showed that the Young's modulus becomes smaller, then maximum stresses decrease. It is believed that these studies can be contributed in automobile suspension system.

Development of Active Vibration Isolation Equipments Using Fuzzy Method

  • Rim, Kyung-Hwa;Yang, Xun;An, Chae-Hun;Jin, Kyoung-Bog
    • 반도체디스플레이기술학회지
    • /
    • 제6권4호
    • /
    • pp.17-22
    • /
    • 2007
  • Vibration isolation equipments are mostly required in precise measurement and manufacturing system. Among all the vibration isolation equipments, air-spring is the most widely used equipment because of low resonant frequency and high damping ratio. In this study, we used Takagi-Sugeno fuzzy method to design an active vibration isolation system using air-spring, and compared the fuzzy method with passive control method and PID control method. Due to the non-linearity characteristics of air-spring, fuzzy controller was verified to be the most effective both in simulation and experiment.

  • PDF

공기스프링을 이용한 방진테이블의 능동 제어 (Active Control of Vibration Isolation Table Using Air-spring)

  • 안채헌;임광혁;진경복;임경화
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.565-571
    • /
    • 2007
  • In the process of accurate manufacture and measurement, it is necessarily required to isolate external or internal vibration due to external disturbance and internal actuators. The higher vibration isolation system gets damping around resonance, the better it is generally. This paper analyzes the performance of an existing passive air-spring for vibration isolation table by using experiment and simulation. Optimal design for a passive air spring can be obtained by tuning the size of the orifice. Also design for an active isolation system is carried out by applying PID controller and considering non-linearity of pneumatic characteristics with help of look-up table. We have developed the active vibration isolation table with the better isolation performance.

공기스프링을 이용한 방진 테이블의 능동 제어 (Active Control of Vibration Isolation Table Using Air-spring)

  • 안채헌;임광혁;권혁진;정진훈;배윤화;진경복;임경화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.831-836
    • /
    • 2006
  • In the process of accurate manufacture and measurement, it is necessarily required to isolate external or internal vibration due to external disturbance and internal actuators. The higher vibration isolation system gets damping around resonance, the better it is generally. This paper analyzes the performance of an existing passive air-spring for vibration isolation table by using experiment and simulation. Optimal design for a passive air spring can be obtained by tuning the size of the orifice. Also design for an active isolation system is carried out by applying PID controller and considering non-linearity of pneumatic characteristics with help of look-up table. We have developed the active vibration isolation table with the better isolation performance.

  • PDF

수직 흡수전열관의 흡수성능에 미치는 스프링의 영향 (Influence of Spring on The Absorption Performance of a Vertical Absorber Tube)

  • 김정국;조금남
    • 설비공학논문집
    • /
    • 제14권10호
    • /
    • pp.825-832
    • /
    • 2002
  • The present study investigated the enhancement of the absorption performance by the spring wrapped around the outer surface of the vertical falling film absorber tube. Heat and mass transfer enhancements were experimentally investigated, and flow visualization was performed to observe the wettability and flow pattern of the solution. The key experimental parameters were spring diameter (0.5, 1.0 mm) and spring pitch (1, 3, 10 mm), film Reynolds number (50~150), and concentration of LiBr-$H_2O$ solution (55, 60, 65 wt%). As the spring diameter was increased, the absorption mass flux, Sherwood number, Nusselt number, heat flux, and heat transfer coefficient were increased The Nusselt and Sherwood numbers showed the maximum at the spring pitch of 3mm, and the ratio of pitch to diameter of approximately 3 and 6 for the spring diamter of 0.5 mm, respectively.