• Title/Summary/Keyword: Air-side

Search Result 1,198, Processing Time 0.029 seconds

Air Side Heat Transfer Charactieristics of Tension Wound Transverse Fin with Minichannel (장력 감김으로 부착된 가로방향 휜-미니채널의 공기측 열전달 특성)

  • Kim Jong-Soo;Im Yong-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.701-706
    • /
    • 2005
  • Pipes, tubes. and tubular sections with external transverse high fins have been used extensively for heating cooling, and degumidifying air and other gases. This work was performed to investigate an air side heat transfer charactieristics of minichannel with tension wound transverse fin. This estimate was confirmed conversion heat capacity the air side surface area enlargement and heat transfer charactieristics performed available inlet tube side hot water mass flux or outlet tube side air frontal air velocity. The most suitable tension wound transverse finned minichannel was measured extremely low in air side pressure drop and fin effectiveness $3.3\~4.4$. The pressure drop $0.9\~2.8Pa$ was ranged frontal air velocity $0.5\~1.2m/s$. It is also appeared that heat transfer in air side could be better conversion heat area which has been increased $330\%$ of heat capacity compared with the bare tube.

Cooling Characteristics at Hot Side of the Thermoelectric Module for an Air Conditioner (열전모듈을 이용한 에어컨의 방열부 냉각특성에 대한 연구)

  • 김서영;강병하;장혁재;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.214-220
    • /
    • 2002
  • A small air conditioner using thermoelectric module has been designed and built. Three types of cooling methods, such as air cooling, closed-loop water cooling, and evaporative cooling, for hot side of thermoelectric module have been investigated. Among three types of cooling method, the evaporative cooling method is seen to be the most effective to achieve the steady state operation of a thermoelectric air conditioner The system performance with evaporative cooling method are also studied in detail for several oprating parameters, such as input power to the thermoelectric module, water or air flow rate at the hot side, and air flow rate at the cold side. The results obtained indicate that the cooling capacity of a system is increased with an increase in the input power to the thermoelectric module while the system COP is decreased. It is also found that the optimal air flow rate as well as water flow rate at the hot side is needed for the best system performance at a liven operating condition. Both the system COP and cooling capacity are increased as the air flow rate at cold side is increased.

Economic Evaluation of Air-side Economizer System for Data Center (데이터센터의 외기도입 냉방시스템 적용에 따른 경제성 평가)

  • Park, Seonghyun;Seo, Janghoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • Many studies are being conducted with the aim of reducing the energy consumption in data centers, which are one of the highest consumers of energy. The use of an air-side economizer system that uses external air during intermediate and winter seasons is being considered for reducing the energy consumption of air conditioners. In this study, using the energy simulation, we evaluated the energy performance of a central chilled water cooling system and air-side economizer system in domestic data centers. Further, the cost-effectiveness of the air-side economizer was analyzed through Life-Cycle Cost Analysis. The results showed that with the use of air-side economizer systems, the energy costs increased as the applied filter grade increased; however, unlike existing central chilled water systems, it would break even within 2 years.

Impact of Air-side Economizer Control Considering Air Quality Index on Variable Air Volume System Performance

  • Cho, Sang-Hyeon;Park, Joon-Young;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • The objective of this study is to determine the effectiveness of a modified air-side economizer in improving indoor air quality (IAQ). An air-side economizer, which uses all outdoor air for cooling, affects the building's IAQ depending on the outside air quality and can significantly affect the occupants' health, leading to respiratory and heart disease. The Air Quality Index (AQI), developed by the US Environmental Protection Agency (US EPA), measures air contaminants that adversely affect human beings: PM10, PM2.5, SO2, NO2, O3, and CO. In this study, AQI is applied as a control for the operation of an air-side economizer. The simulation is analyzed, comparing the results between the differential enthalpy economizer and AQI-modified economizer. The results confirm that an AQI-modified economizer has a positive effect on IAQ. Compared to the operating differential enthalpy economizer, energy increase in an operating AQI-modified economizer is 0.65% in Shanghai and 0.8% in Seoul.

Evaluation of Air-side Heat Transfer and Friction Characteristics on Design Conditions of Evaporator (증발기의 설계조건에서 공기측 열전달계수 및 압력강하 산출)

  • 김창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1007-1017
    • /
    • 2003
  • An experimental study on the air-side pressure drop and heat transfer coefficient of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side heat transfer coefficients in the literature is not based on a consistent approach. This paper focuses on new method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry and wet surface heat transfer estimation in fin-tube heat exchanger having refrigerant on the tube-side. Results are presented as plots of friction f-factor and Colburn j -factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of 150∼250 kg/$m^2$s with air flows at velocity ranges from 0.3 m/s to 0.8 m/s.

Evaluation of Air-side Heat Transfer and Friction Characteristics on Design Conditions of Condenser (응축기의 설계조건에서 공기측 열전달계수 및 압력강하 산출)

  • 김창덕;전창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.220-229
    • /
    • 2003
  • An experimental study on the air-side pressure drop and heat transfer coefficient of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side heat transfer coefficients in the literature is not based on a consistent approach. This paper focuses on new method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry surface heat transfer estimation in fin-tube heat exchanger having refrigerant on the tube-side. Results are presented as plots of friction f-factor and Colburn j -factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of 150~250 kg/$m^2$s with air flows at velocity ranges from 0.6 m/s to 1.6 m/s.

An Experimental Study on the Effect of the Air Temperature on the Air-Side Heat-Transfer Coefficient and the Friction Factor of a Fin-and-Tube Heat Exchanger (외기 온도 변화가 핀-관 열교환기의 공기측 열전달계수와 마찰계수에 미치는 영향에 관한 실험적 연구)

  • Kim, Nae-Hyun;Cho, Honggi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.149-158
    • /
    • 2017
  • In general, the air-side j and f factors of evaporators or condensers are obtained through single-design tests performed under air-dry and wet-bulb temperatures. Considering that the indoor or outdoor air temperatures vary significantly during the operation of an air conditioner, it is necessary to confirm that the experimentally-obtained j and f factors are widely applicable under variable air conditions. In this study, a series of tests were conducted on a two-row slit-finned heat exchanger to confirm the applicability. The results showed that, for the dry-surface condition, the changes of the tube-side water temperature, water-flow rate, and air temperature had virtually no effect on the air-side j and f factors. For the wet condition, however, the f factor was significantly affected by these changes; contrarily, the j factor is relatively independent regarding this change. The formulation of the possible reasoning is in consideration of the condensation behavior underneath the tube. The wet-surface j and f factors are larger than those of the dry surface, with a larger amount for the f factor.

Soot and NOx Emissions in Laminar Diffusion Flames: Effects of Air-Side versus Fuel-Side Diluent Addition (층류 확산화염에서의 매연과 질소산화물의 배출특성 : 공기측/연료측 희석제 첨가에 따른 영향)

  • Lee, Jong-Ho;Eom, Jae-Ho;Park, Chul-Woong;Jun, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.596-603
    • /
    • 2003
  • Present study has been conducted to see the relative effects of adding N: to fuel-side and air-side on flame structure, soot formation and NOx emissions. Experiments were carried out to ascertain to what degree chemical kinetics and/or molecular transport effects can explain the differences in soot formation and NOx emission by studying laminar diffusion flames. Direct photograph was taken to see the flame structure. CARS techniques was used to get the flame temperature profiles. And spatial distribution of soot could be obtained by PLII method. CHEMKIN code was also used to estimate the global residence time to predict NOx emissions at each condition. Results from these studies indicate that fuel-side dilution is more effective than air-side dilution in view of NOx emissions. However, air-side dilution shows greater effectiveness over fuel-side dilution in soot formation. And turbulent mixing and heat transfer problems were thought to be considered in practical applications.

A Convergence Study through Flow Analysis of Automotive Side Mirror (자동차 사이드미러의 유동 해석을 통한 융합연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.161-166
    • /
    • 2019
  • This study examines the flows near the different side mirrors by analyzing the flow due to air resistance at A, B and C models of automotive side mirrors. Model A is a square-shaped side-mirror. Model B is a triangular side-mirror and model C is an oval-shaped side-mirror. The air resistance of the side-mirror while driving is reduced and the automotive power can be reduced by changing the design of automotive side-mirror. As analysis result, as the pressure of air resistance against side mirror becomes larger, it can be seen that the air flow rate becomes great. Therefore, it can be estimated that the smaller the pressure of air resistance, the smaller the flow rate and the better the air flow. Therefore, it can be acknowledged that model B is the best model. As the design data of the automotive side mirror obtained on the basis of this study result are utilized, the esthetic sense can be shown while driving a car at real life.

A Study on Air Temperature Difference between Windward and Leeward Side at High-rise Buildings (고층건물 풍상면과 풍하면의 기온차)

  • Jin, Ri;Cui, Hua;Yu, Jin-Hang;Ku, Hee-Yeong;Zheng, Hai-Yan;Jin, Wen-Cheng;Lee, Kyoo-Seock
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.1
    • /
    • pp.63-71
    • /
    • 2012
  • To investigate the air temperature difference between windward and leeward side at high-rise building area, the air temperature and relative humidity data were observed for 10 minute interval from July 9, 2011 to November 30, 2011. The observed data were compared, analyzed and examined to illustrate air temperature between windward side (H Apartment) and Leeward side (W Apartment). The diurnal and seasonal variation of air temperature difference between windward and leeward site were also investigated. After the analysis, the overheat of windward side by $0.4^{\circ}C$ irrespective short distance of two observation positions. It was also lower than those of surrounding air temperature observing stations. It is mainly due to the air temperature decreasing effects of leeward side of high rise buildings.