• Title/Summary/Keyword: Air-heating

Search Result 2,329, Processing Time 0.026 seconds

The Effect of Soil Warming on the Greenhouse Heating Load (지중가온이 온실의 난방부하에 미치는 영향)

  • Nam, Sang-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.

A Study on Application of Warm Air Circulator by Using the Carbon Heating Element with Particle Type (입상 탄소 발열체의 열원을 이용한 온풍기의 적용에 관한 연구)

  • Bae, K.Y.;Lee, K.S.;Kong, T.W.;Chung, H.S.;Jeong, H.Y.;Chung, H.T.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.31-37
    • /
    • 2003
  • This paper is a study on application of warm air circulator by using the carbon heating element with particle type. The main variables are the input current and amount of carbon heating source for experimental characteristics. The experimental results are obtained as follows. As the input current and temperature are increased, the resistance of heat source is decreased about $20{\sim}25%$ by the effect of negative resistance. As the amount of heating source is small, Joule heat is large with the input current. When the amount of heating source is 300 and the input current is 15A, the value of Joule heat is about 4604.6kJ/h. The heat production efficiency of carbon heating source is larger about 10% than the sheath heater.

  • PDF

Experimental Study on Thermal Sensation Evaluation in Heating(part I: Emotion & Sensibility Image Evaluation by Indoor Temperature Change in Heating) (실내 난방시 온열쾌적성 평가에 관한 연구(part I;실내 난방시 실온변화에 따른 감성이미지 평가))

  • 한남규;금종수;김형철;김동규;김창연
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.41-46
    • /
    • 2003
  • In recently, Is inhabiting more than 70% indoors during a day in case of company employee and ordinary people which is looking at usual business. Therefore Thermal comfort of human body about indoor temperature and air flow acting very heftily. When intestine temperature is fallen for external low temperature and air flow in winter in case enter into heated room feel comfort by effect of temperature and feel comfort or discomfort by room heating condition gradually. Therefore it is important that grasp thermal comfort about temperature and air flow in heating to keep continuous comfort in indoor dwelling. Temperature and thermal comfort factor of emotion & sensitivity image exert fair effect since heating middle although thermal comfort change greatly effect on sensation about temperature at actuality heating early. Need much study yet in vantage point of emotion & sensitivity although much study were held about thermal and comfort sensibility and when heat in existing research until now. Therefore this study is targeting that evaluate thermal comfort through introduction of estimation method by emotion & sensibility image real and synthetic sensibility about thermal environment that is becoming winter heating.

  • PDF

A Numerical Study on the Transmission of Thermo-Acoustic Wave Induced by Step Pulsed Heating in an Enclosure (제한공간내 펄스가열에 기인한 열음향파의 전달특성에 관한 수치적 연구)

  • 황인주;김윤제
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.914-922
    • /
    • 2002
  • Thermo-acoustic waves can be thermally generated in a compressible flow field by rapid heating and cooling, and chemical reaction near the boundary walls. This mechanism is very important in the space environment in which natural convection does not exist. Also this may be a significant factor for heat transfer when the fluids are close to the thermodynamic critical point. In this study, the generation and transmission characteristics of thermo-acoustic waves in an air-filled confined domain with two-step pulsed heating are studied numerically. The governing equations are discretized using control volume method, and are solved using PISO algorithm and second-order upwind scheme. For the purpose of stable solution, time step was set to the order of $1\times10_-9s,\;and\;grids\;are\;50\times2000$. Results show that temperature and pressure distributions of fluid near the boundary wall subjected to a rapid heating are increased abruptly, and the induced thermo-acoustic wave propagates through the fluid until it decays due to viscous and heat dissipation. Pressure waves have sharp front shape and decay with a long tail in the case of step heating, but these waves have sharp pin shape in the case of pulsed heating.

A Study on The Characteristics of Heat Pump Heating System Utilizing Heat Storage Tank (축열수조를 이용하는 열펌프식 난방의 특성에 관한 연구)

  • Kim H.K.;Lee G.Y.;Park M.S.;Hwang I.S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.4
    • /
    • pp.392-405
    • /
    • 1987
  • A study of appling solar assisted heat pump heating system to Korean climatic charac-teritics has been undertaken through computer simulation using TRNSYS (A Transient System Simulation Program). It is insufficient for heating system composed of each of solar and heat pump system to supply heat met with heating load. So SAHP (Solar Assisted Heat Pump) heating systems which combined solar system with heat pump system are analized using the standard weather data of Korea. And SAHP heating systems are categorized into the series system in which the solar storage is used as the source for the heat pump, the parallel system in which ambient air is used as the source for the heat pump, and the dual source system in which the storage or ambient is used as the source depending on which source yields the lowest work input. These combined system are better than each of solar and heat pump heating system in view of thermal performance, and parallel system is most effective among these combined systems.

  • PDF

Characteristics of Ondol Heating Load for the Determination of Heat Pump Power (열펌프 시스템의 규모 결정을 위한 온돌난방부하 특성)

  • 노정근;백은기;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.28 no.3
    • /
    • pp.217-224
    • /
    • 2003
  • To find out heating load and to determine the power of heat pump compressor for the Ondol room heating the COP of heat pump, the variation of Ondol room air temperature, the variation of ambient temperature and power consumption of heat pump are analyzed. The results from this study were summarized as follows: 1. The COP of the heat pump in close loop decreased as the ambient air temperature. The COP was 2.26 when the temperature difference of condenser was $20\pm3^{\circ}C$. 2. The Ondol surface temperature was $25\pm3^{\circ}C$ when the hot water of $40^{\circ}C$ was supplied from hot water storage tank to the Ondol and the temperature difference between the Ondol surface and the room air temperature was $7~8^{\circ}C$. 3. The ratio of thermal conduction heating load to total heating load in Ondol heating space was found to be 83% and ratio of ventilation heating load was 17%. Therefore, the thermal conduction heating load was confirmod to be a major heating load in Ondol heating space. 4. In case of the ambient temperature of $3.2^{\circ}C$, the efficiency of heat exchange of Ondol heating system was 85%. 5. The heating load per Ondol heating surface area and volume of Ondol room space were theoretically analyzed. In case of the room temperature of $20^{\circ}C$ and the ambient temperature of $-3.2~3.8^{\circ}C$, the heating load per Ondol surface area was 115.8~167.6kJ/h ㆍ㎥ and per Ondol mom space volume was 50.2~72.7kJ/h ㆍ㎥. 6. The compressor power of heat pump fur the Ondol room heating could be determined with the heating load analyzed in this study In case of the Ondol room air temperature of 17~2$0^{\circ}C$ and the ambient temperature of -5~3.8$^{\circ}C$, the compressor power of heat pump per Ondol surface area was analyzed to be $2.3\times10^{-2}psm^2$, and per volume of Ondol room space $1.0\times10^{-2}1.4\times10^{-2}ps/m^2$ps.

Calculation of Outdoor Air Fraction through Economizer Control Types during Intermediate Season

  • Hong, Goopyo;Hong, Jun;Kim, Byungseon Sean
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.13-19
    • /
    • 2016
  • Purpose: In this study, we examined outdoor air fraction using historical data of actual Air Handling Unit (AHU) in the existing building during intermediate season and analyzed optimal outdoor air fraction by control types for economizer. Method: Control types for economizer which was used in analysis are No Economizer(NE), Differential Dry-bulb Temperature(DT), Diffrential Enthalpy(DE), Differential Dry-bulb Temperature+Differential Enthalpy(DTDE), and Differential Enthalpy+Differential Dry-bulb Temperature (DEDT). In addition, the system heating and cooling load were analyzed by calculating the outdoor air fraction through existing AHU operating method and control types for economizer. Result: Optimized outdoor air fraction through control types was the lowest in March and distribution over 50% was shown in May. In case of DE control type, outdoor air fraction was the highest of other control types and the value was average 63% in May. System heating load was shown the lowest value in NE, however, system cooling load was shown 1.7 times higher than DT control type and 5 times higher than DE control type. For system heating load, DT and DTDE is similar during intermediate season. However, system cooling load was shown 3 times higher than DE and DEDT. Accordingly, it was found as the method to save cooling energy most efficiently with DE control considering enthalpy of outdoor air and return air in intermediate season.

Basic Operational Characteristics for Developments of Solar Air Heater for Air Heating in Winter (태양열 이용 난방용 공기가열기 개발을 위한 기초 운전 특성)

  • Kim, Jong-Ryeol;Hong, Boo-Pyo;Woo, Jong-Soo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.87-94
    • /
    • 2011
  • To develop the solar air heater, prototype of solar heater with test room set up on the roof of test chamber and operation characteristics were examined with solar radiation. Air induced from outside was supplied by a blower and also heated air was supplied to the test chamber(size of 1,000mm(inwidth)*2,000mm(in length)*2,000mm(in depth)) established already for performance. It was clear that almost 30% of solar radiation was converted into effective heating energy at maximum and the highest air temperature was $46^{\circ}C$, and thus solar air heater in winter could be used as an possible alternative heating system in building. Furthermore, heat energy obtained from solar air heater can be applied to regenerate absorber in the solar desiccant cooling system.

Distribution of Hot Tap Water Load for District Heating Substation with Hot Tap Water 2-Stage Heat Exchanger (급탕 2단열교환방식 지역난방 열사용시설의 급탕부하 분배에 관한 연구)

  • Jeong, Dong-Hwa;Kim, Joo-Wan;Baik, Young-Jin;Lee, Young-Soo;Chung, Dae-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.297-302
    • /
    • 2011
  • According to the standards for district heating substation established by Korea District Heating Corporation, water heating supply systems at over 150 Mcal/h capacity must employ the 2-stage heat exchanger that improves the system efficiency by reusing the heat included in the return water of district heating system already used for space heating. In this paper, the operating characteristics of the system in accordance with the load distribution of two heat exchangers for pre-heating and re-heating cold city water are investigated. The results including mass flow rate, return temperature etc. help to manage district heating system economically.

Experimental Study for Estimation of Air Heating Performance and Improvement of Thermal Performance of Hybrid Solar Air-water Heater (태양열 공기-물 가열기의 공기 가열 성능 평가 및 열적 성능 개선을 위한 실험적 연구)

  • Choi, Hwi-Ung;Kim, Young-Bok;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.47-57
    • /
    • 2017
  • Solar energy is one of the important renewable energy resources. It can be used for air heating, hot water supply, heat source of desiccant cooling system and so on. And many researches for enhancing efficiency have been conducted because of these various uses of solar thermal energy. This study was performed to investigate the air heating performance of hybrid solar air-water heater that can heat air and liquid respectively or simultaneously and finding method for improving thermal performance of this collector. This collector has both liquid pipe and air channel different with the traditional solar water and air heater. Fins were installed in the air channel for enhancing the air heating performance of collector. Also air inlet & outlet temperature, ambient temperature and solar collector's inner part temperature were confirmed with different air velocity on similar solar irradiance. As a result, temperature of heated air was shown about $43^{\circ}C$ to $60^{\circ}C$ on the $30^{\circ}C$ of ambient temperature and thermal efficiency of solar collector was shown 28% to 73% with respect to air velocity. Also, possibility of improvement of thermal performance of this collector could be ascertained from the heat transfer coefficient calculated from this experiment. Thus, it is considered that the research for finding optimal structure of hybrid solar air-water heater for enhancing thermal performance might be needed to conduct as further study based on the method for improving air heating performance confirmed in this study.