• Title/Summary/Keyword: Air-gap

Search Result 1,449, Processing Time 0.038 seconds

Effect of Sowing Date and Plastic Film Mulching on Mositure and Temperature of Rhizosphere Soil and Early Growth of Sesame (참깨의 파종기별(播種期別) 플라스틱필름 피복이 근권토양수분(根圈土壤水分) 및 지온(地溫)에 미치는 영향(影響)과 그에 따른 초기생육(初期生育)의 변화(變化))

  • Oh, Dong-Shig;Kwon, Yong-Woong;Im, Jung-Nam;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.2
    • /
    • pp.125-135
    • /
    • 1994
  • Field experiment was carried out in order to clarify effects of plastic film mulching on temperature and moisture of rhizosphere soil and their subsequent effects on seedling emergence, earlier growth, vegetative growth and grain yield of sesame. The textural class of the experimental field soil was the sandy loam(Bonyang series) and the variety of sesame planted was "Ansan-ggae". The experiment was conducted by combining four sowing dates of April 25, May 10, May 25, June 10 and two mulching treatments(mulching, non-mulching) over two year of 1991 and 1992. The results were summarized as follows : 1. The daily mean soil temperature of 5cm deep soil was increased by 1.4 to $2.8^{\circ}C$ by plastic film mulching. The average soil water content was increased by 0.5 to 3.0%(V/V) in the drier season, while decreased by 1.0 to 2.0%(V/V) in the rainy season by mulching. 2. The establishment rate of sesame seedling was very sensitive to soil temperature. For normal seedling emergence, from the seeding date to the 7th date after sowing, the daily mean soil temperature higher than $21.0^{\circ}C$ was required at the experimental field conditions. 3. The average soil water content in the range of 14.0 to 21.0%(V/V) at 5cm deep soil seemed not to be limiting for the germination and emergence of sesame. The effect of soil water content on seedling establishment was very small in this range, but the optimum level of soil water content ranged from 14.0 to 15.0%(V/V) in the experimented sandy loam. 4. The wetter the soil profile was, the larger the gap of soil temperature between the mulched and non-mulched condition was. The effect of mulching on the establishment rate of sesame seedlings was much greater in the lower air temperature conditions. However, when the sowing of sesame came earlier than at the date with the daily mean air temperature below $19.0^{\circ}C$, the effects of earlier sowing and mulching were offsetted by the retarded seedling growth due to the low air temperature, and thus earlier sowing with mulching did not enhance the grain yield of sesame.

  • PDF

Characteristics of c-axis oriented sol-gel derived ZnO films (C-축으로 정렬된 sol-gel ZnO 박막의 특성)

  • 김상수;장기완;김인성;송호준;박일우;이건환;권식철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.2
    • /
    • pp.49-55
    • /
    • 2001
  • ZnO films were fabricated on p-type Si(100) wafer ITO glass and quartz glass by the sol-gel process using zinc acetate dihydrate as starting material. A homogeneous and stable solution was prepared by dissolving the zinc acetate dihydrate in a solution of 2-methoxyethanol and monoethanolamine (MEA). ZnO films were deposited by spin-coating at 2800 rpm for 25 s and were dried on a hot plate at $250^{\circ}C$ for 10 min. Crystallization of the films was carried out at $400^{\circ}C$~$800^{\circ}C$ for 1 h in air. X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), UV-vis transmittance spectroscopy, FTIR transmittance spectroscopy and Photoluminescence (PL) spectroscopy measurements have been used to study the structural and optical properties of the films. ZnO films highly oriented along the (002)plane were obtained. In all cases the films were found to be transparent (above 70%) in visible range with a sharp absorption edge at wavelengths of about 380nm, which is very close to the intrinsic band-gap of ZnO(3.2 eV). The low temperature band-edge photoluminescence revealed a complicated multi-line structure in terms of bound exciton complexes and the phonon replicas.

  • PDF

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

Physical Analysis of High Strength Concrete According to Mixing Methods of Binders for Application Analysis of Pre-Mix Cement (프리믹스 시멘트의 활용성 분석을 위한 결합재의 혼합방법에 따른 고장도 콘크리트의 물성 분석)

  • Han, Cheon-Goo;Lee, Hae-Ill
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.127-133
    • /
    • 2009
  • It is important to increase the strength of binders in order to enhance the strength of concrete. However, when the mineral admixture used for high strength concrete is incorporated individually, its dispersibility decreases due to the phenomenon of compaction, which reduces its fluidity and results in insufficient strength being created. To solve this problem, we can pre-mix each binder in advance to disperse a mineral admixture among binders, which will strengthen the fluidity and strength of concrete. Therefore, this study analyzed the properties of high strength concrete depending on the mix method used, to determine the effect of pre-mix cements ranging from W/B 15 to 35%. It was found that the fluidity of pre-mix increased to a level higher than that of individual mix due to its dispersion and ball bearing effect. The air content was slightly decreased from the result of individual mix due to the micro filler effect, which causes fine particles of silica-fume to fill the voids among cement particles, while the setting time of pre-mix was shorter than that of individual mix, because enhanced dispersion of pre-mix affects hydration heat time. The compressive strength of pre-mix increased due to the phenomenon of compaction of gap structure, and the variation of coefficient decreased by 1.69% on average in strength variation.

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

Fabrication of a Patient-Customized Helmet with a Three-Dimensional Printer for Radiation Therapy of Scalp

  • Oh, Se An;Lee, Chang Min;Lee, Min Woo;Lee, Yeong Seok;Lee, Gyu Hwan;Kim, Seong Hoon;Kim, Sung Kyu;Park, Jae Won;Yea, Ji Woon
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.100-105
    • /
    • 2017
  • The purpose of the present study was to develop and evaluate patient-customized helmets with a three-dimensional (3D) printer for radiation therapy of malignant scalp tumors. Computed tomography was performed in a case an Alderson RANDO phantom without bolus (Non_Bolus), in a case with a dental wax bolus on the scalp (Wax_Bolus), and in a case with a patient-customized helmet fabricated using a 3D printer (3D Printing_Bolus); treatment plans for each of the 3 cases were compared. When wax bolus was used to fabricate a bolus, a drier was used to apply heat to the bolus to make the helmet. $3-matic^{(R)}$ (Materialise) was used for modeling and polyamide 12 (PA-12) was used as a material, 3D Printing bolus was fabricated using a HP JET Fusion 3D 4200. The average Hounsfield Unit (HU) for the Wax_Bolus was -100, and that of the 3D Printing_Bolus was -10. The average radiation doses to the normal brain with the Non_Bolus, Wax_Bolus, and 3D Printing_Bolus methods were 36.3%, 40.2%, and 36.9%, and the minimum radiation dose were 0.9%, 1.6%, 1.4%, respectively. The organs at risk dose were not significantly difference. However, the 95% radiation doses into the planning target volume (PTV) were 61.85%, 94.53%, and 97.82%, and the minimum doses were 0%, 77.1%, and 82.8%, respectively. The technique used to fabricate patient-customized helmets with a 3D printer for radiation therapy of malignant scalp tumors is highly useful, and is expected to accurately deliver doses by reducing the air gap between the patient and bolus.

Comparison of Performances of Forward Osmosis and Membrane Distillation Processes for Shale Gas Plant Water Treatment (셰일가스 플랜트 용수 처리를 위한 정삼투(FO)와 막증발(MD) 공정의 성능 비교)

  • Koo, Jaewuk;Lee, Sangho;Shin, Yonghyun;Yun, Taekgeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • As non-conventional oil resources such as shale gas have been widely developed, proper treatment of flowback and produced water is becoming important. However, application of conventional water treatment techniques is limited due to high concentration of pollutants such as oil and grease, organics, harmful chemicals, and inorganic ions. In this study, we examined the feasibility of using forward osmosis (FO) and air gap membrane distillation (AGMD) as novel treatment options for shale gas wastewater. Laboratory-scale FO and MD devices were fabricated and used for the experiments. Results showed that FO could be used to treat the synthetic wastewater. Using 5 M NaCl as the draw solution, the flux was approximately $6L/m^2-hr$ during the treatment of low range wastewater (TDS: 66,000 mg/L). Nevertheless, AGMD was more effective to treat high range wastewater (Total Dissolved Solid: 260,000 mg/L) than FO.

Numerical Study of Flow Characteristics in a Solid Particle Incinerator for Various Design Parameters of Injectors (고체 입자 소각로에서 분사기의 설계 인자에 따른 유동 특성에 관한 수치해석적 연구)

  • Son, Jin Woo;Kim, Su Ho;Sohn, Chae Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1079-1089
    • /
    • 2013
  • The flow characteristics in a solid particle incinerator are investigated numerically for high burning rate of wastes. The studied incinerator employs both a swirl flow used in the furnace of powerplants and a design concept applied to a rocket combustor. As the first step, the non-reactive flow field is analyzed in the incinerator with primary and secondary injectors through which solid fuel and air are injected. The deflection angle of a primary injector, inclination angle of a secondary injector, and gap between the two types of injectors are selected as design parameters. The swirl number is adopted for evaluating the degree of swirl flow and estimated over wide ranges of three parameters. The swirl number increases with deflection angle, but it is affected little by inclination angle. Recirculation zones are formed near the injectors, and their size affects the swirl number. The swirl number decreases with the zonal size of recirculation. From the numerical results, the design points can be found with strong swirl flow.

A Experimental Study on Vibration Attenuation of a Plate with Eddy Current Damper (와전류 감쇠기를 적용한 평판의 진동 저감에 관한 실험적 연구)

  • Pyeon, Bong-Do;Kim, Jong-Hyuk;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.355-361
    • /
    • 2020
  • Among these satellites, low - orbit small satellites with military characteristics require multi - target observation, and demand for high-resolution photographs and images is increasing. Fast maneuverability is the most important factor for high-resolution images and multi - target observations. However, in the case of a small satellites, it is possible to perform the attitude maneuver if it has high speed, but the residual vibration occurs when the attitude maneuver is completed and the next attitude maneuver is completed. In this study, to verify the vibration characteristics of the plate generated after attitude maneuver, an experimental fixture for simulating the attitude maneuver was fabricated and tested. In addition, Eddy Current Damper (ECD) using Eddy Current Brake system (ECB) is proposed as a passive damping method using permanent magnet to reduce vibration. A mathematical model was established to apply ECD and it was experimentally implemented according to the magnetic flux density and the air gap of the permanent magnet. One plate of four solar panels (plate) was specified, the residual vibration reduction performance after the test was verified experimentally.