• Title/Summary/Keyword: Air-gap

Search Result 1,446, Processing Time 0.038 seconds

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

Physical Analysis of High Strength Concrete According to Mixing Methods of Binders for Application Analysis of Pre-Mix Cement (프리믹스 시멘트의 활용성 분석을 위한 결합재의 혼합방법에 따른 고장도 콘크리트의 물성 분석)

  • Han, Cheon-Goo;Lee, Hae-Ill
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.127-133
    • /
    • 2009
  • It is important to increase the strength of binders in order to enhance the strength of concrete. However, when the mineral admixture used for high strength concrete is incorporated individually, its dispersibility decreases due to the phenomenon of compaction, which reduces its fluidity and results in insufficient strength being created. To solve this problem, we can pre-mix each binder in advance to disperse a mineral admixture among binders, which will strengthen the fluidity and strength of concrete. Therefore, this study analyzed the properties of high strength concrete depending on the mix method used, to determine the effect of pre-mix cements ranging from W/B 15 to 35%. It was found that the fluidity of pre-mix increased to a level higher than that of individual mix due to its dispersion and ball bearing effect. The air content was slightly decreased from the result of individual mix due to the micro filler effect, which causes fine particles of silica-fume to fill the voids among cement particles, while the setting time of pre-mix was shorter than that of individual mix, because enhanced dispersion of pre-mix affects hydration heat time. The compressive strength of pre-mix increased due to the phenomenon of compaction of gap structure, and the variation of coefficient decreased by 1.69% on average in strength variation.

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

Fabrication of a Patient-Customized Helmet with a Three-Dimensional Printer for Radiation Therapy of Scalp

  • Oh, Se An;Lee, Chang Min;Lee, Min Woo;Lee, Yeong Seok;Lee, Gyu Hwan;Kim, Seong Hoon;Kim, Sung Kyu;Park, Jae Won;Yea, Ji Woon
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.100-105
    • /
    • 2017
  • The purpose of the present study was to develop and evaluate patient-customized helmets with a three-dimensional (3D) printer for radiation therapy of malignant scalp tumors. Computed tomography was performed in a case an Alderson RANDO phantom without bolus (Non_Bolus), in a case with a dental wax bolus on the scalp (Wax_Bolus), and in a case with a patient-customized helmet fabricated using a 3D printer (3D Printing_Bolus); treatment plans for each of the 3 cases were compared. When wax bolus was used to fabricate a bolus, a drier was used to apply heat to the bolus to make the helmet. $3-matic^{(R)}$ (Materialise) was used for modeling and polyamide 12 (PA-12) was used as a material, 3D Printing bolus was fabricated using a HP JET Fusion 3D 4200. The average Hounsfield Unit (HU) for the Wax_Bolus was -100, and that of the 3D Printing_Bolus was -10. The average radiation doses to the normal brain with the Non_Bolus, Wax_Bolus, and 3D Printing_Bolus methods were 36.3%, 40.2%, and 36.9%, and the minimum radiation dose were 0.9%, 1.6%, 1.4%, respectively. The organs at risk dose were not significantly difference. However, the 95% radiation doses into the planning target volume (PTV) were 61.85%, 94.53%, and 97.82%, and the minimum doses were 0%, 77.1%, and 82.8%, respectively. The technique used to fabricate patient-customized helmets with a 3D printer for radiation therapy of malignant scalp tumors is highly useful, and is expected to accurately deliver doses by reducing the air gap between the patient and bolus.

Comparison of Performances of Forward Osmosis and Membrane Distillation Processes for Shale Gas Plant Water Treatment (셰일가스 플랜트 용수 처리를 위한 정삼투(FO)와 막증발(MD) 공정의 성능 비교)

  • Koo, Jaewuk;Lee, Sangho;Shin, Yonghyun;Yun, Taekgeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • As non-conventional oil resources such as shale gas have been widely developed, proper treatment of flowback and produced water is becoming important. However, application of conventional water treatment techniques is limited due to high concentration of pollutants such as oil and grease, organics, harmful chemicals, and inorganic ions. In this study, we examined the feasibility of using forward osmosis (FO) and air gap membrane distillation (AGMD) as novel treatment options for shale gas wastewater. Laboratory-scale FO and MD devices were fabricated and used for the experiments. Results showed that FO could be used to treat the synthetic wastewater. Using 5 M NaCl as the draw solution, the flux was approximately $6L/m^2-hr$ during the treatment of low range wastewater (TDS: 66,000 mg/L). Nevertheless, AGMD was more effective to treat high range wastewater (Total Dissolved Solid: 260,000 mg/L) than FO.

Numerical Study of Flow Characteristics in a Solid Particle Incinerator for Various Design Parameters of Injectors (고체 입자 소각로에서 분사기의 설계 인자에 따른 유동 특성에 관한 수치해석적 연구)

  • Son, Jin Woo;Kim, Su Ho;Sohn, Chae Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1079-1089
    • /
    • 2013
  • The flow characteristics in a solid particle incinerator are investigated numerically for high burning rate of wastes. The studied incinerator employs both a swirl flow used in the furnace of powerplants and a design concept applied to a rocket combustor. As the first step, the non-reactive flow field is analyzed in the incinerator with primary and secondary injectors through which solid fuel and air are injected. The deflection angle of a primary injector, inclination angle of a secondary injector, and gap between the two types of injectors are selected as design parameters. The swirl number is adopted for evaluating the degree of swirl flow and estimated over wide ranges of three parameters. The swirl number increases with deflection angle, but it is affected little by inclination angle. Recirculation zones are formed near the injectors, and their size affects the swirl number. The swirl number decreases with the zonal size of recirculation. From the numerical results, the design points can be found with strong swirl flow.

A Experimental Study on Vibration Attenuation of a Plate with Eddy Current Damper (와전류 감쇠기를 적용한 평판의 진동 저감에 관한 실험적 연구)

  • Pyeon, Bong-Do;Kim, Jong-Hyuk;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.355-361
    • /
    • 2020
  • Among these satellites, low - orbit small satellites with military characteristics require multi - target observation, and demand for high-resolution photographs and images is increasing. Fast maneuverability is the most important factor for high-resolution images and multi - target observations. However, in the case of a small satellites, it is possible to perform the attitude maneuver if it has high speed, but the residual vibration occurs when the attitude maneuver is completed and the next attitude maneuver is completed. In this study, to verify the vibration characteristics of the plate generated after attitude maneuver, an experimental fixture for simulating the attitude maneuver was fabricated and tested. In addition, Eddy Current Damper (ECD) using Eddy Current Brake system (ECB) is proposed as a passive damping method using permanent magnet to reduce vibration. A mathematical model was established to apply ECD and it was experimentally implemented according to the magnetic flux density and the air gap of the permanent magnet. One plate of four solar panels (plate) was specified, the residual vibration reduction performance after the test was verified experimentally.

A Study on the Analysis of Market Efficiency of Agricultural Products in E-Commerce B2C Platform -Based on the Consumers' Price Fairness Perceptions- (전자상거래 B2C 플랫폼 농산물 시장효율성 분석에 관한 연구 -소비자의 가격공정성 관점 기준으로-)

  • Bai, Xiu-Na;Chung, Gi-Young;Kim, Hyung-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.237-248
    • /
    • 2020
  • The purpose of this study is to measure the agricultural product market efficiency of the three e-commerce platforms from the perspective of consumer price fairness perception, analyze the quality and price gap of invalid brands, and help agricultural products enterprises to formulate reasonable price strategies. The characteristics of farm products sold in e-commerce platforms(quality, origin, taste, safety level) were selected as output indicators and the prices of products were selected as input indicators to evaluate the efficiency of the market through DEA analysis. According to the analysis, JD mall has the largest proportion of effective brands, while YHD.com has the highest average market efficiency, and northeast rice has the largest difference in average efficiency among the three platforms. The results show that price inefficiencies still exist in the electronic market. The development of online market for agricultural products should pay attention to consumer price fairness and pay attention to the coordination between price and quality. The limitation of this paper is that it does not focus on the influence of words of mouth marketing in internet market and consumer experience, which can be the future research direction.

Behaviors of Early-Age Cracks on the JCP (무근 콘크리트포장 초기균열 거동 연구)

  • Park, Dae-Geun;Suh, Young-Chan;Ann, Sung-Sun;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.47-59
    • /
    • 2004
  • The temperature variation of concrete pavement at early-age significantly affects the initiation and propagation of its early-age cracks. This implies that the measurement and analysis of early age temperature trend are necessary to examine the causes of early age cracks in the concrete pavement. In this study, it is investigated how the early age temperature trend in concrete pavement affects the random crack initiation and behaviors of saw-cut joints using the actual construction site which is located at the KHC test road. During 72 hours after placing the concrete pavement, the ambient air temperature and temperatures at the top, middle, and bottom in concrete pavement were measured and the random crack initiation in concrete slabs and early age behaviors in the joints were surveyed. The investigation results indicate that the first random crack was initiated at one of the slabs placed in the early morning which have higher temperature changes during early 72 hours. The movement of slab was influenced by the early-age crack in the joint. It suggested that the different occurrence time of the cracks in the joint had an influence on the behavior of the cracks. Besides, the slab constructed In the morning had higher possibility of crack initiation than that in the afternoon. The rarely occurred cracks had bigger gap than other cracks.

  • PDF

Broadband Transmission Noise Reduction Performance of Smart Panels Featuring Piezoelectric Shunt Damping and Passive Characteristics (압전감쇠와 수동적 특성을 갖는 압전지능패널의 광대역 전달 소음저감성능)

  • 이중근;김재환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.150-159
    • /
    • 2002
  • The possibility of a broadband noise reduction of piezoelectric smart panels is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing material is bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to tune the piezoelectric shunt circuit, the measured electrical impedance model is adopted. Resonant shunt circuit composed of register and inductor in stories is considered and the circuit parameters are determined based on maximizing the dissipated energy through the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a square crosses sectional tunnel and a loud speaker is mounted at one side of the tunnel as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across the panels is measured. Noise reduction performance of a double smart panel possessing absorbing material and air gap shows a good result at mid frequency region except the first resonance frequency. By enabling the piezoelectric shunt damping, noise reduction is achieved at the resonance frequency as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.