• Title/Summary/Keyword: Air-foam

Search Result 233, Processing Time 0.025 seconds

Effect of Irrigation Frequency on Growth of Tomato Plug Seedlings in Media Containing Cellular Glass Foam and Peatmoss (Cellular Glass Foam과 Peatmoss를 함유한 혼합배지에서 관수빈도가 토마토 플러그묘의 생육에 미치는 영향)

  • 박정호;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.12 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • Cellular glass foam (CGF), the reprocessed glass, has a possibility to be used as a medium component in plug culture of horticultural crops due to the its excellent air and water permeability as comparable to perlite. An experiment was conducted to investigate growth of plug seedlings of Lycopersicum esculentum 'Segye' as influenced by irrigation frequency in various medium combinations of CGF (2.0-4.0 mm particle size) and peatmoss. Seeds were sown in 200-cell plug trays, filled with mixtures of CGF and peatmoss either at 33:67 or 25:75 (%. v/v) and were germinated on a fogged propagation bed. The irrigation frequencies used were one, two or three times per every two days. A commercial plug medium (Tosilee medium) was used as the control, and the irrigation frequency in the control was one time per day. Growth of seedlings, and medium pH and EC were measured at 33 days after sowing. The medium composition had little influence on overall growth of seedlings. Irrigation frequency very significant affected number of leaves, leaf area, chlorophyll concentration, fresh and dry weights of shoots and roots, and dry matter. Growth of seedlings was the greatest with the highest irrigation frequency in the 25% CGF+75% peatmoss mixture.

Continuous Nitrate Reduction by Gel and Foam Matrix (GFM) Immobilized Cells (겔-스폰지 혼용 시스템에 고정화된 세포를 통한 질산염의 연속적 분해)

  • Cho, Yang-Hee;Hahm, Tae-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.902-907
    • /
    • 1998
  • In this study the anaerobic degradation of nitrate by in GFM (gel and foam matrix) and bead gel immobilized Paracoccus denitrificans DSM 65 in continous culture was conducted. A novel GFM immobilization system was developed in order to improve conventional system (bead). With increasing nitrate concentration in water, the nitrate reduction rate was increased. The observed maximum denitrification rate by in GFM immobilized cells was 177 mg/L h in buffered water, while that was 33 mg/L h in tap water. In comparison with bead system the reduction activity by GFM system showed $1.2{\sim}2.1$ times better. The denitrification activity was not changed after 16 days storage at $5^{\circ}C$ and also showed better activity than that of free cells or even bead immobilized cells.

  • PDF

Self-pressurization Effect and PEMFC Performance Improvement Using Metal Foam Compression (금속 폼 압축에 의한 자가 가압 효과 및 PEMFC 성능 개선)

  • Kim, Hyeonwoo;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.618-623
    • /
    • 2022
  • The bipolar plate is a key component of the polymer electrolyte membrane fuel cell (PEMFC) that transfers reactants and electrons, discharges water and heat as by-products, and serves as a mechanical support for the membrane electrode assembly (MEA). Therefore, the flow field structure of the bipolar plate plays an important role in improving fuel cell performance. In this study, PEMFC performance was investigated with copper foams with different compressibility ratios applied to cathode bipolar plates using a 25 cm2 unit cell. The total resistance decreased as the compressibility ratio of the metal foams increased, and, in particular, the charge transfer and mass transfer resistance were significantly improved compared to the serpentine flow field, lowering voltage loss in medium and high current density region. In the case of pressurized air reactant flow with serpentine structure, fuel cell performance was similar to that of a compressed metal foam flow field (S3) up to the medium current density region, but low performance appeared in the high current density region due to flow field structure limitations.

Fine Particle Removal by a Vehicle Air Cleaner (차량용 에어클리너의 미세입자 제거특성)

  • Park, Byung-Hyun;Kim, Sang-Bum;Kim, Gyung-Soo;Lee, Sang-Ryul;Lee, Myong-Hwa
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.86-93
    • /
    • 2007
  • There is a growing interest to develop an eco-friendly air cleaner with high performance through a remanufacturing process. Two kinds of polyurethane filter media, a coarse (Filter-A) and a fine filter media (Filer-B), are used in this study to protect a vehicle engine from airborne particles. In order to improve the collection performance of the filters (Filter-A, Filter-B), an oil coating technology on the filter surface was introduced. As a result, inertial force is a dominant collection mechanism for a dry filter media, so that collection efficiency increases with increasing filtration velocity. However, intra-structure change of an oil-coated filter media influences on the collection mechanism, which shows a non-linear collection efficiency curve in terms of filtration velocity. The result shows that the developed filter media are eco-friendly and effective to protect a vehicle engine from airborne particles especially at low filtration velocity.

  • PDF

Modeling of air cushion vehicle's flexible seals under steady state conditions

  • Zalek, Steven F.;Karr, Dale G.;Jabbarizadeh, Sara;Maki, Kevin J.
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-28
    • /
    • 2011
  • The purpose of this paper is to demonstrate the efficacy of modeling a surface effect ship's air-cushion flexible seal utilizing a two-dimensional beam under steady state conditions. This effort is the initial phase of developing a more complex three-dimensional model of the air-seal-water fluid-structure interaction. The beam model incorporates the seal flexural rigidity and mass with large deformations while assuming linear elastic material response. The hydrodynamic pressure is derived utilizing the OpenFOAM computational fluid dynamic (CFD) solver for a given set of steady-state flow condition. The pressure distribution derived by the CFD solver is compared with the pressure required to deform the seal beam model. The air pressure, flow conditions and seal geometry are obtained from experimental analysis. The experimental data was derived from large-scale experimental tests utilizing a test apparatus of a canonical surface effect ship's flexible seal in a towing tank over a variety of test conditions.

Improvement on the Functional Properties of Gelatin Prepared from the Yellowfin Sole Skin by Precipitation with Ethanol (알코올처리에 의한 각시가자미껍질 젤라틴의 기능성 개선)

  • Kim, Jin-Soo;Lee, Eung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.683-689
    • /
    • 1994
  • With a view to utilizing effectively fish skin wastes from marine manufactory, a gelatin solution extracted from yellowfin sole skin was fractionated by precipitation with ethanol, and then the functional and physico-chemical properties for the fractionated gelatin were determined. Ethanol was added up to 50% of ethanol content to a gelatin solution extracted from yellowfin sole skin, then the mixture was left to stand at $0^{\circ}C$ for 12 hours. Finally, the precipitates were dried by hot-air ($40^{\circ}C$). The gel strength and melting point of a 10% gel of gelatin prepared from yellowfin sole skin by precipitation with ethanol has 322.4g and $23.3^{\circ}C$, respectively. The physico-chemical properties of the ethanol treated fish skin gelatin were superior to those of fish skin gelatin prepared without ethanol treatment. Besides, the functional properties of the ethanol treated gelatin were lower in solubility and higher in water holding capacity, oil binding capacity, emulsifying activity, emulsifying stability, foam expansion and foam stability than those of pork skin gelatin sold on market as well as gelatin prepared without ethanol treatment. It may be concluded, from these results, that the fish skin gelatin prepared by precipitation with ethanol can be effectively utilized as a human food by improving the functional properties.

  • PDF

Cause Diagnosis and Reduction Measures of Foaming in the Treated Wastewater Outlet of D Wastewater Treatment Plant (하수처리수 방류구의 거품발생 원인진단 및 저감방안: 국내 하수처리장 사례를 중심으로)

  • Shin, Jae-Ki;Cho, Youngsoo;Kim, Youngsung;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.124-129
    • /
    • 2016
  • This study was conducted to suggest the cause analysis and mitigation measures of foaming generated in the effluent of wastewater treatment plant. The foam generated in the outlet connected with the tidal river system was identified as structural problems. And the main cause of foaming was air entrainment by an impinging jet and the internal accumulation by the diffusion barrier. In consideration of these conditions, it present the effective ways such as micro-screen and submerged outlet, to mitigate the foaming generated in the water channel and outlet end.

Materal properties of Porous BCP Scaffolds depending on the process conditions

  • Park, Lee-Ho;Kim, Min-Seong;Min, Yeong-Gi;Song, Ho-Yeon;Lee, Byeong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.44.2-44.2
    • /
    • 2009
  • BCP powder was synthesized using microwave hydrothermal process with mixed calcium hydroxide and phosphoric acid. After using replica method, porous BCP scaffold was fabricated. PU (Poly Urethane) was used as the fugitive skeleton to fabricate the porous scaffold. BCP powder was mixed in PVB (Polyvinyl butyral) and ethanol solution and then applied to the PU foam by dip coating. After several times of coating and the subsequent oven drying the coated PU foam was burnt out at $750^{\circ}C$ at air to remove the PU. The resulting networked porous composites were sintered at $1250^{\circ}C$, $1300^{\circ}C$ and $1350^{\circ}C$ in microwave furnace for 30 minutes. Material properties of the porous bodies like compressive strength and porosity were investigated. Detailed microstructure of the BCP porous body was characterized by SEM and XRD and TEM techniques. In our experiments, the relationship between mechanical property and viscosity of powder, sintering temperature was investigated.

  • PDF

Surface Composition and Molecular Diffusion on the Stability of Foams Formed from Protein/Surfactant Mixtures (단백질/계면활성제 혼합계에서 기포안정성에 대한 계면조성과 분자확산)

  • Park, Sun-Yeong;Kim, Myung-Soo;Jeong, Noh-Hee;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.158-166
    • /
    • 2000
  • A conductimetric study of foam formed from mixture of the protein, ${\beta}-lactoglobulin$, and the nonioinc surfactant, SML, revealed that their stability was reduced at concentrations of SML in the range $3{\sim}10mM$. The interaction of SML with ${\beta}-lactoglobulin$ was investigated by fluorimetry and a dissociation constant of $0.2{\mu}M$ was calculated for the complex. Surface tension studies confirmed the presence of interaction between the two components and provided evidence for the progressive displacement of ${\beta}-lactogloblin$ from the air/water interface with increasing SML concentration. Experiments using air-suspended microscopic thin liquid films revealed transitions in the chainage characteristics and thickness of the film at SML concentrations below that which resulted in destabilization of the foam. However, measurements of surface mobility of fluorescent-labeled ${\beta}-lactoglobulin$ by a photobleaching method identified that a transition to a mobile system occurred at a SML concentration which correlated with the onset of instability in the disperse phase. The results would indicate that maintenance of the viscoelastic properties of the surface is paramount importance in determining the stability of interfaces comprising mixtures of protein and surfactant.

Strength and Deformation Characteristics of Lightweight Foamed Soil Using In-situ Soil (현장발생토를 활용한 경량기포흔합토(LWFS)의 강도 및 변형특성)

  • Yoon Gil-Lim;You Seung-Kyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.125-131
    • /
    • 2004
  • A series of unconfined compression tests were carried out firstly to investigate mechanical behaviors of Lightweight Foamed Soil (LWFS) which is composed of dredged soils, cement and air foam. And secondly, to compare the difference of mechanical characteristic of LWFS with previous research conclusions (Yoon & Kim,2004) by using different dredged soils sampled at Joong-Ma in Gwangyang harbor area. Based on numberous laboratory experiments, it was found that deformation coefficient $(E_{50})$ of LWFS increases with increasing cement contents but decreases with increasing initial water contents of dredged soils. Appropriate regression formula (normalizing factor scheme) which considers relationship between LWFS composing elements, initial water contents of dredged soils, cement, air foam, and uniaxial compression strength or LWFS is proposed for practical applications. Finally, it was clear that, to apply LWFS method to practical projects, certain laboratory test would be necessary to take considerations of soil locality because mechanical charac-teristics of LWFS were surely dependent upon their sampled locations and properties.