• Title/Summary/Keyword: Air-dielectric

Search Result 429, Processing Time 0.026 seconds

Bipolar Charge Distribution of Nano Particles Passing through the Dielectric Barrier Discharge Reactor (DBD(Dielectric Barrier Discharge)에 의해 하전된 나노입자의 양극성 대전량 분포)

  • Ji, Jun-Ho;Kang, Suk-Hoon;Byeon, Jung-Hoon;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1684-1689
    • /
    • 2003
  • Dielectric Barrier Discharges (DBD) in oxygen and air are well established for the production of large quantities of ozone and are more recently being applied to a wider range of after treatment processes for HAPs(Hazardous Air Pollutants). The potential use as a charger for particle collection are not well known. In this work, we measured charge distribution of nanometer or submicron sized particles passing through the dielectric barrier discharge reactor. The bipolar charge characteristics of particles passing DBD reactor were investigated. Fluorometric method using uranine particles and a fluorometer was employed to examine the bipolar charging characteristics of the charged particles by DBD reactor. Finally, the charge distributions of particles were determined from the electrical mobility classification using DMA.

  • PDF

Effects of Temperature Coefficients for Dielectric Constants on Thermoreflectances and Thermal Responses of Metal Thin Films Exposed to Ultrashort Pulse Laser Beams

  • Seungho Park
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Effects of temperature coefficients fur dielectric constants on transient reflectances and thermal responses have been investigated for a metal(gold) thin-film during ultrashort pulse laser heating. Heating processes are simulated using the conventional conduction model(parabolic one-step, POS), the parabolic tow-step model(PTS), the hyperbolic two-step model(HTS). Results fro the HTS model are very similar to those from the PTS model, since the laser heating time in this study is considerably greater than the electron relaxation time. PTS and HTS models, however, result in completely different temperature profiles from those obtained by the POS model due to slow electron-lattice interactions compared to laser pulse duration. Transient reflectances are directly estimated from the linear relationship between electron temperature and complex dielectric constants, while conventional approaches assume that the change in reflectances is proportional to that in temperatuer. Reflectances at the front surface vary considerably for various dielectric constants, while those at the rear surface remain unchanged relatively.

Development of High-Quality LTCC Solenoid Inductor using Solder ball and Air Cavity for 3-D SiP

  • Bae, Hyun-Cheol;Choi, Kwang-Seong;Eom, Yong-Sung;Kim, Sung-Chan;Lee, Jong-Hyun;Moon, Jong-Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.5-8
    • /
    • 2009
  • In this paper, a high-quality low-temperature co-fired ceramic (LTCC) solenoid inductor using a solder ball and an air cavity on a silicon wafer for three-dimensional (3-D) system-in-package (SiP) is proposed. The LTCC multi-layer solenoid inductor is attached using Ag paste and solder ball on a silicon wafer with the air cavity structure. The air cavity is formed on a silicon wafer through an anisotropic wet-etching technology and is able to isolate the LTCC dielectric loss which is equivalent to a low k material effect. The electrical coupling between the metal layer and the LTCC dielectric layer is decreased by adopting the air cavity. The LTCC solenoid inductor using the solder ball and the air cavity on silicon wafer has an improved Q factor and self-resonant frequency (SRF) by reducing the LTCC dielectric resistance and parasitic capacitance. Also, 3-D device stacking technologies provide an effective path to the miniaturization of electronic systems.

  • PDF

A Study on Characteristics of Insulation Breakdown and Surface Discharge by the Oxygen Concentration in the Dry Air in Quasi-Uniform Field (준평등전계중 Dry Air내 산소의 농도에 따른 절연파괴 및 연면방전 특성 연구)

  • Beak, Jong-Hyun;Seok, Jeong-Hoo;Choi, Byoung-Ju;Bae, Sungwoo;Kim, Ki-Chai;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.41-46
    • /
    • 2015
  • This study was conducted to discover a substitute of $SF_6$ gas. $SF_6$ gas is widely used across the industries. Thanks to superior electrical properties, in particular, it has been commonly used in electrical industry. However, there have been a lot of studies on its serious effect on global warming. As a substitute of this synthetic gas, a mixture of dry air and $N_2/O_2$ was chosen in this study. In case of $N_2/O_2$, dielectric strength differs depending on the mixing ratio. This study examined dielectric breakdown and flashover after adjusting oxygen percentage in the dry air. This test was conducted in a quasi-uniform electric field depending on pressure, oxygen concentration and gas mixtures. The test results found that dielectric voltage and flashover voltage were the highest at a certain oxygen concentration. It is the results of this photoionization and electron attachment of oxygen.

Nano Particle Precipitation and Residual Ozone Decomposition of a Hybrid Air Cleaning System Comprising Dielectric Barrier Discharge Plasma and MnO2 Catalyst or Activated Carbon (활성탄 또는 촉매가 장착된 배리어 유전체 방전 하이브리드. 공기청정 시스템의 나노입자 및 잔류 오존 제거 특성)

  • Byeon, Jeong-Hoon;Hwang, Jung-Ho;Ji, Jun-Ho;Kang, Suk-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.524-533
    • /
    • 2003
  • DBD(Dielectric Barrier Discharge) plasma in air is well established for the production of large quantities of ozone and is more recently being applied to aftertreatment processes for HAPs(Hazardous Air Pollutants). Aim of this work is to determine design and operating parameters of a hybrid air cleaning system. DBD and ESP(Electrostatic Precipitator) are used as nano particle charger and collector, respectively. Pelletized MnO$_2$ catalyst or activated carbon is used fer ozone decomposition or adsorption material. AC voltage of 7~10 KV(rms) and 60 Hz is used as DBD plasma source. DC - 8 KV is applied to the ESP for particle collection. The overall particle collection efficiency for the hybrid system is over 85 % under 0.64 m/s face velocity. Ozone decomposition efficiency with pelletized MnO$_2$ catalyst or activated carbon packed bed is over 90 % when the face velocity is under 0.4 m/s in dry air.

A Study on Dielectric Strength and Insulation Property of High Voltage Switchgear Applied Dry Air Gas (Dry Air Gas를 적용한 초고압 Switchgear 절연특성연구)

  • Jeong, D.H.;Chung, Y.H.;Seo, K.B.;Kim, T.H.;Kim, J.B.;Lee, H.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1731-1737
    • /
    • 2008
  • This paper present the fundamental insulation characteristics of Dry Air gas and insulation coating in high voltage power apparatus. It is known that the dielectric strength. of Dry Air is approximately one-third that of SF6 gas. we attempt that the insulation coating and dry air gas have replaced the SF6 gas as insulation of the switchgear. We proposed the dry air insulated switchgear(DAIS) for High Voltage apparatus. To acquire technology of insulation characteristic improvement made standards for complex insulation structure and conducted simulations and experiments

Dependence of Ozone Generation in a Micro Dielectric Barrier Discharge on Dielectric Material and Micro Gap Length

  • Sakoda, Tatsuya;Sung, Youl-Moon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.201-206
    • /
    • 2004
  • In order to investigate the optimum conditions for the effective ozone formation in a dielectric barrier discharge, measurements of ozone concentration were carried out for various conditions such as the gap length, the dielectric material and the operating gas. It was found that the optimum discharge conditions differed exceedingly in the types of operating gases and dielectric materials. In dry air, dielectric material with low dielectric constant and thermal conductivity, which might contribute to the restriction of the gas temperature rise in the discharge region, proved effective in obtaining both high ozone yield and concentration. The optimum gap length was considered to be in the range of 600-800 mm. In oxygen, using a quartz glass disk as a dielectric material, the required condition to obtain the high ozone yield and concentration was expanded.

Surface discharge Characteristics for epoxy resin in Dry-Air with different electrode features (전극형상변화에 따른 Dry-Air 중의 에폭시 수지의 연면방전특성)

  • Park, He-Rie;Lee, Jung-Hwan;Choi, Eun-Hyuck;Park, Sung-Gyu;Park, Kwang-Seo;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.253-255
    • /
    • 2008
  • This paper gives a basic data of the surface discharge characteristics for epoxy resin in Dry-Air. Used electrodes are needle to plane, sphere to plane and KS M3015 electrodes. With the changing electrodes in same condition, we can obtain different creeping lengthes, breakdown voltages and dielectric strengths, respectively. Dielectric strengths of Needle to plane electrodes are more higher than the others. Breakdown voltage and dielectric strength increase as the thickness of epoxy resin and creeping strength increase.

  • PDF

반도체 산업용 나노기공 함유 유기실리카 박막

  • 차국헌;윤도영;이진규;이희우
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.48-48
    • /
    • 2002
  • It is generally accepted that ultra low dielectric interlayer dielectric materials (k < 2.2) will be necessary for ULSI advanced microelectronic devices after 2003, according to the International Technology Roadmap for Semiconductors (ITRS) 2000. A continuous reduction of dielectric constant is believed to be possible only by incorporating nanopores filled with air (k = 1.0) into electrically insulating matrices such as poly(methyl silsesquioxane) (PMSSQ). The nanopo.ous low dielectric films should have excellent material properties to survive severe mechanical stress conditions imposed during the advanced semiconductor processes such as chemical mechanical planarization process and multilayer fabrication. When air is incorporated into the films for lowering k, their mechanical strength has inevitably to be sacrificed. To minimize this effect, the nanopores are controlled to exist in the film as closed cells. The micromechanical properties of the nanoporous thin films are considered more seriously than ever, particularly for ultra low dielectric applications. In this study, three approaches were made to design and develop nanoporous low dielectric films with improved micromechanical properties: 1) wall density increase of nanoporous organosilicate film by copolymerization of carbon bridged comonomers; 2) incorporation of sacrificial phases with good miscibility; 3) selective surface modification by plasma treatment. Nanoporous low-k films were prepared with copolymerized PMSSQ and star-shaped sacrificial organic molecules, both of which were synthesized to control molecular weight and functionality. The nanoporous structures of the films were observed using field emission scanning electron microscopy, cross-sectional transmission electron microscopy, atomic force microscopy, and positronium annihilation lifetime spectroscopy(PALS). Micromechanical characterization was performed using a nanoindentor to measure hardness and modulus of the films.

  • PDF

Uncertainty and Compensation on the cell for Measurement of the Solid Permittivity Materials (고체 유전율 측정용 cell의 불확도 분석과 보상)

  • Kim, Han-Jun;Kang, Jeon-Hong;Yu, Kwang-Min;Hyun, Lee-Sei;Koo, Kyung-Wan;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.482-483
    • /
    • 2007
  • For measurement of dielectric constants, the commercial parallel plate electrodes system with guard-ring electrode have been widely used up to now. The capacitance derived from the parallel plate electrodes capacitor with guard-ring electrode is calculated by the equation of ($C={\epsilon}\;{\cdot}\;\frac{area\;of\;electrod}{distance\;between\;electrodes}$). Therefore, in parallel plate electrode capacitor, the diameter of the guarded electrode, the gap size between guarded electrode and guard ring, and distance between two active electrode should be measured precisely to calculate dielectric constants from the measured capacitance. Consequently their mechanical measurement uncertainties are directly contributed. Especially the air-gap between the electrodes and dielectric specimen at the system must be existed and the measurement error derived from the air-gap is impossible to evaluate as measurement uncertainties. In this study, we analyze the uncertainty of the commercial dielectric constant test cell using 3 kinds CRMs.

  • PDF